_ Flow of Fluids

pensity :

Density (p) or mass dcnsity of
g[ system, it is expressed in kg/m?,
1000 kg/nt.
Weight Density :

(aken as 9810 N/m?. r weight density of pure water at 277 K (4 9C) is

a fluid is e mas.

s of the fluid per unit v
The dcnsity of fluid per unit volume. In the

re water at 277 K (4 °C) is taken as

The relation between mass density and weight density is

wW=pg
where g is the acceleration due to gravity (9.81 m/s?).

Specific Volume :

Specif"tc volume of a fluid is the volume of the fluid per unit mass. In the SI system, it is
expressed in m¥/kg. '

Specific Gravity :

The specific grf':lviFy of a fluid is the ratio of the density of the fluid to the density of a
standard fluid. For liquids, water at 277 K (4 °C) is considered/chosen as a standard fluid and
for gases, air at NTP (0°C and 760 torr) is considered as a standard fluid.

Vapour Pressure :

The vapour pressure of a pure liquid is defined as the absolute pressure at which the
liguid and its vapour are in equilibrium at a given temperature or The pressure exerted by
the vapour (on the surface of a liquid) at equilibrium conditions is called as the vapour
pressure of the liquid at a given temperature. Pure air free water exerts a vapour pressure of

101.325 kPa (760 torr) at 373.15 K (100 °C).

Surface Tension :

Im to exert tension is called as the surface tension. It is

The property of liquid surface fi
requircd ; f film in equilibrium, It is denoted by the symbol

the force required to maintain a unit length 0
0 (Greek sigma) and its SI unit is N/m.

2. »
\l-‘»COSIly :
" A fluid undergoes continuous deformation when subjected to .:'zmr :!resx. hThe
: . . - . her N a3 fes t a8 -
resistance offered by a fluid 10 its continuous deformation (W hen subjected to a shear
stress/force) is called viscosity |
¢ re of its resistance 1o flow.

en temperature is a measi
lependent of the pressure for the
r, it varies with temperature. For
for liquids it decreases

The viscosity of a fluid at a giv

.oyt meactically iNC
The viscosity of a fluid (gas or liquid) 15 pl.dw;lt“zcw
fange that is normally encountered In pmdf‘vctlem erature, while
gases, viscosity increases with an increase I P

With an increase in temperature.
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Fig. 7.1 : Definition of viscosity

Consider two layers of a fluid 'y’ cm apart as shown in Fig. 7.1. Let the area of each of
these layers be A cm?, Assume that the top layer is moving parallel to the bottom layer at 5
velocity of 'u' cm/s relative to the bottom layer. To maintain  this motion, i.e., the velocity 'y
and 1o overcome the fluid friction between these layers, for any actual fluid, a force of
'V dyne (dyn) is required.,

Experimentally it has been found that the force F is directly proportional to the velocity
u and arca A, and inversely proportional to the distance y.

Therefore, mathematically it becomes

F e uAly el 9 A

Introducing a proportionality constant pt (Greek ‘mu’), Equation (7.1) becomes
F=puAly gl (0 .y
FIA = puly .. (13)

Shear stress, T (Greek 'tau’) equal to F/A between any two layers of a fluid may be
expressed as

T = FIA = puly ...(74)
The above equation in a differential form becomes
T = p-g—; = KT0)

(‘The ratio u/y can be replaced by the velocity gradient du/dy.)
In the SI system, the shear stress T is expressed in N/m? and the velocity gradient/shear
rate or rate of shear deformation is expressed in 1/s or s,
Fquation (7.5) is called Newton's law of viscosity. In the rearranged form, it serves to
define the propostionality constant as
which is called as the coefficient of viscosity, or the dynamic viscosity (since it involves
force), or simply the viscosity of a fluid. Hence, the dynamic viscosity 4, may be defined as
the shear stress required to produce unit rate of shear deformation (or shear rate).
Viscosity is the property of a fluid and in the SI system it has the units of (N.s)/m

2 or

Yas or kg/lm.s),
As the unit (N.s)/m?is very large for most of the fluids, it is customary to express

viscosity as (mN.s)/m? or mPa.s, where mN is millinewtons, i.e., 102 N and mPa 18
millipascal, i.e., 10 Pa,
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In the C.G.S. .S}’s'fem, \-/iscc?sity may be expressed in poise (P) (the unit poise is named
after the French scientist Poiseuille) or centipoise (cP).

1 poise = 1P = 1 gm/(cm.s)
= 0.10 kg/(m.s)
= 0.10 (N.s)/m? or Pa.s
= 100 cP
[n many problems involving viscosity, there appears a term kinematic viscosity.
The kinematic viscosity of a fluid is defined as the ratio of the viscosity of the fluid to
its density and is denoted by the symbol v (Greek 'nu’).
v = pip | - (1)
In the SI system, v has the units of m%s. The C.G.S. unit of kinematic viscosity 18
termed as stoke and is equal to 1 cm?/s.
[NEWTONIAN AND NON-NEWTONIAN FLUIDS

For most commonly known fluids, a plot of T v/s du/dy results in a straight line passing
through the origin and such fluids are called as Newtonian fluids.

T—>
(Shear stress)

—

(Velocity gradient)

i i - jan fluids
i - locity gradient for Newtonian and Non-Newtonian
Fig. 7.2 Shear lress s o of v ds for which the ratio of the shear

1 : ' ity, i.e., the flui
Fluids that obey Newton's law of viscosity, L., . : -
stress to the rate of shear or shear rate is constant, ar¢ called as Newtonian fluids. This 1

true for all gases and for most purc liquids. L
Examsles of Newtonian Fluids : All gases, aif, liquids, such as kerosene, alcohol,

i i I i ter.
glycerine, benzene, hexane ether etc., solutions of inorganic s}alts and of.suga:- :; :;?am 2
) ' j stress to the shear rate 1S no
Fluids for which the ratio of the shear _ . i b !

considered £s a function of rate of shear, i.e., fluids whfch.do noI. folllo;v i\tfs;::o:oi tl;i::m f
il e 3 -Newtonian fluids. Generally, liquids particularly thos g
e mer divided solids and liquid solutions of large
ian in behaviour.

a second phase in suspension (soluti(I)\?s otf finely
non-Newtonl _ o _
are Fluids : Tooth pastes, paints, gels, jellies, slurries and

molecular weight materials)

Examples of Non-Newtonian

polymer solutions. '

n's

A Newtonian fluid is one that follo}\lws ﬂljiedwitsosai

independent of rate of shear or shezlar rate, t en-Newtonian-
varies with shear rate, the fluid is said t0 be no

law of viscosity. If viscosity is
d to be Newtonian and if viscosity
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There are three common types of non-Newtonian fluids,
(a) Bingham Fluids or Bingham Plastics ¢ These fluids resist o small shegp Stresy

indefinitely but flow linearly under the action of larger shear stress, 1.e., these fuidy () not
deform, i.e., flow unless a threshold shear stress value (t,) is not exceeded,

These fluids can be represented by
T="1, du/dy= 0, T>7T, T=T+N.du/dy

where T, is the yield stress / threshold shear stress and 1 is commonly called ag (e
coefficient of rigidity.
Examples : Tooth paste, jellies, paints, sewage sludge and some slurries.
(b) Pseudoplastic Fluids : The viscosity of these fluids decreases with increase |y
velocity gradient, i.e., shear rate.
Examples : Blood, solution of high molecular weight polymers, paper pulp, muds, most
slurries and rubber latex.
(c) Dilatent Fluids : The viscosity of these fluids increases with an increase in
velocity gradient.
' Examples : Suspensions of starch in water, pulp in water, and sand filled emulsions.
The experimental curves for pseudoplastic as well as dilatent fluids can be represented
by a power law, which is also called the Ostwald-de-Waele equation,
T = k (dw/dy)" iia (748)
where k and n are arbitrary constants.
Newtonian fluids:n= 1,k =p
Pseudoplastic fluids ;: n < |
Dilatent fluids : n > 1

Pseudoplastics are said to be shear-rate-thinning and dilatent fluids are said to be shear-
rate-thickening,

PRESSURE

The basic property of a static fluid is pressure. When a certain mass of fluid is contained
in a vessel, it exerts forces at all points on the surfaces of the vessel in contact. The forces $0
exerted always act in the direction normal to the surface in contact, The normal force exerted
by a fluid per unit area of the surface is called as the fluid pressure. If F is the force acting
on the area A, then the pressure or intensity of pressure is given by

P = F/IA . .. (79)

In a static fluid, the pressure at any given point is the same in all the directions. If the
pressure at a given point was not the same in all directions, there would be non-equilibrium
and the resultant force should exist. As the fluid is in static equilibrium, there is no net

unbalanced force at any point. Hence, the pressure in all directions is the same and thus
independent of direction.
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Pressure Head :

The vertical height or the free surface '
abO . . 2 . .
_-are head. The pressure head may be expre;:; (cizl;ys point in a liquid at rest is called as the

— L, N/m? __(kg.m/s?)/m?
pg’ kg/mdxm/s? = (kg/m3) (m/s?) = ™

pI'C

... (7.10)

where P is in N/m2, p in kg/m? and g in m/s2. The units of h are m of liquid.

Ashthe prefsgre. S in a static liquid depends upon the height of the free surface
above the point, 1t 1S convenient to express a fluid pressure in terms of pressure head. The
pressure head is then expressed in terms of meters of a liquid column

HYDROSTATIC EQUILIBRIUM

Pressure = P + dP

i B _}j-h
//,/T _____ B Y
/, 1
7/ 1
Fluid of density = p——_._é_.. 1 d Pressure = P
g RN R by
7
rd
4
z T v
Area=A

Fig. 7.3 : Hydrostatic equilibrium

Consider the vertical column of a single static fluid shown in Fig. 7.3. In this column of
the static fluid, the pressure at any point is the same in all directions. The pressure is also
constant at any horizontal plane parallel to the earth's surface, but it varies with the height of

the column (it changes along the height of the column). Let the cross-sectional area of the
kg/m?. Let 'P', N/m? be the pressure at a

;O!umﬂ be A m? and the density of the fluid be p
cight 'h' (meter) from the base of the column. At a height h + dh from the base of the
be P + dP, N/m2. The forces acting on a

:Ommon (another horizontal plane), let the pressure
mall element of the fluid of a thickness dh between these two planes are :

(i)  Force (P + dP)A is acting downwards. .

acting downwards and is equal t
. taken as —ve.

d within the two planes.

.. taken as +Ve.
(i) Force due to gravity is o mass times acceleration
due to gravity : mg = vpg=Adhpg.
where m is the mass of the fluid containe

(iii) Force PA is acting upwards ..- taken as —Ve.
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As the fluid element is in equilibrium, the resultant of these three forces acting op j,

must be zero. Thus,

+PA-A. dhpg-(P+dP)A=0 o
P.A-A.dhpg-PA-AdP =0 (11
—A.dhpg-AdP =0 L1y

dP + dhp.g =0 e (114

Equation (7.14) is the desired basic equation that can b{? used fpr obtaining the pressure
at any height. Let us apply it to incompressible and compressible fluids.

1. Incompressible Fluids : o
For incompressible fluids, density is independent of pressure.

Integrating Equation (7.14), we get

dP+g.p.dh = 0 .. (L15)
JaP+gp.ldh =0 (7:18)
P +hpg = constant . (7.17)

From Equation (7.17), it is clear that the pressure is maximum at the base of the column
or container of the fluid and it decreases as we move up the column.

If the pressure at the base of the column is P, where h = 0 and the pressure at any height
h above the base is P, such that P, > P,, then

P, h
[dp=—-g.p [ dn o (118)
P, 0
Integrating, we get
(P,-P)) =h.p.g ... (7.19)

where P, and P, are expressed in N/m?, p in kg/m3, h in m, 'g' in m/s? in SL.

With the help of Equation (7.19), the pressure difference in a fluid between any two
points can be obtained by measuring the height of the vertical column of the fluid.

2. Compressible Fluids :
For compressible fluids, density varies with pressure. For an ideal gas, the density is
given by the relation

p = %1\14 ... (7.20)
where P = absolute pressure
M = molecular weight of gas
R = universal gas constant
T = absolute temperature.
Putting the value of 'p' from Equation (7.20) into Equation (7.14),
dP + g (PM/RT) dh = 0 . (7121
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Rearranging Equation (7.21),
% + g% dh =0 s (1.22)
Integrating Equation (7.22), we get
InP+ g.% -h = constant ... (1.23)

Integrating the above equation between two heights hy and h, where the pressures acting
are P, and P,, we get

_P_z M (h, = h))

In P = 4 8- RT ... (7.24)
P, M
P_I = exp.[—g.'ﬁ(hz—ho] ... (7.25)

Equation (7.25) is known as the barometric equation and it gives us the idea of pressure
distribution within an ideal gas for isothermal conditions.
MANOMETERS

Manometers are the simplest pressure measuring devices and are used for measuring
low pressure or pressure differences.
U-tube Manometer

P1 Scale lpz

b

5 _Limb-2

Arm of manometer

Fluid of density p

| I T N T N O O |
rTrrrrroriryrieid

Fluid of density = p,

Fig. 7.4 : U-tube Manometer

e U-tube manometer is the simplest form of manometer. It consists of a small
diameter U-shaped tube of glass. The tube is clamped on a wooden board. Between
the two arms or legs of the manometer, a scale is fixed on the same board. The U-
tube is partially filled with a manometric fluid which is heavier than the process
fluid. The two limbs of the manometer are connected by a tubing to the taps
between which the pressure drop is to be measured. Air vent valves are provided at
the end of each arm for the removal of trapped air in the arm. The manometric fluid
is immiscible with the process fluid. The common manometric fluid is mercury.
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U-tube manometer is filled with a given manometric ﬂ.md (fluid M) upto 3 certaip
height. The remaining portion of the U-tube is filled with the process ﬂuid/f'lowing
flui:j of density p including the tubings. Onc.liml.) of the manometer is connecte to
the upstream tap in a pipeline and the other llmb_ is connected to th?, down§tream ta
in the pipeline between which the pressure difference Py — P, is required to p,
measured. Air, if any, is there in the line connecting taps and manometer j
removed. At steady state, for a given flow rate, the reading of the manometer.
i.e., the difference in the level of the manometric fluid in the two arms is measureq
and it gives the value of pressure difference in terms of manometric fluid across the
taps (s;utions). It may then be converted in terms of m of flowing fluid.

Consider a U-tube manometer as shown in Fig. 7.4 connected in a pipeline. Let
pressure P, be exerted in one limb of the manometer and pressure P, be exerted in
the another limb of the manometer. If P, is greater than P,, the interface between the
two liquids in the limb 1 will be depressed by a distance 'h' (say) below that in the
limb 2. To arrive at a relationship between the pressure difference (P, — P,) and the
difference in the level in the two limbs of the manometer in terms of manometric
fluid (h), pressures at points 1, 2, 3, 4 and 5 are considered.

Pressure at point | = P,

Pressure at point2 = P, +(x+h) p.g
Pressure at point 3 = Pressure at point 2
=P +(x+h)p.g
(as the points 2 and 3 are at the same horizontal plane).
Pressure at point4 = P, + (x +h) p.g—h.py.g
Pressure at point 5 = P, +(x+h) p.g—h.py.g- X.p.g
Pressure at point 5 = P,

Then, we can write,

P, =P +(x+h).pg-hpyg-x.peg .. (7.26)

P| —P2 - Apzh (pM—-p)g e (727)

where AP is the pressure difference and 'h' is the difference in levels in the two arms of the
manometer in terms of manometric fluid.

If the flowing fluid is a gas, density p of the gas will normally be small compared with
the density of the manometric fluid, py, and thus Equation (7.27) reduces to

AP = P, -P,=h.p,.g .. (1.28)

Inclined Manometer

Inclined manometers are used for measuring small pressure differences.
This type of manometer is shown in Fig. 7.5. One arm of the manometer is incll_ned
at an angle of 5 to 10 with the horizontal so as to obtain a larger reading.

(e.g., movement of 7 to 10 mm is obtained for a pressure change corresponding to
1 mm head of liquid.)
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Pressure, P,

Pressure, P,

Fig. 7.5 : Inclined Tube Manometer

« In the vertical leg of this manometer an enlargement is provided so that the
movement of the meniscus in this enlargement is negligible within the operating
range of the manometer. If the reading R(in m) is taken as shown, i.e., distance
travelled by the meniscus of the manometric fluid along the tube, then

h = Rsina ss CE2T)
where o = angle of inclination
and (P, -P,) = Rsinot (py—p) g ... (7.30)

Differential Manometer / Two Liquid Manometer / Multiplying Gauge
Pressure, P, Pressure, P,

Enlarged chamber/
Reservoir

M—Fluid B

1

Fluid C

Fig. 7.6 : Differential Manometer
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* Differential manometer is used for the measurement of very small Pressure
differences or for the measurement of pressure differences with a very high
precision. It may often be used for gases.

* It consists of a U-tube made of glass. The ends of the tube are connected to two
enlarged transparent chambers / reservoirs. The reservoirs at the ends of each arm
are of a large cross-section than that of the tube. The manometer contains two
manometric liquids of different densities and these are immiscible with each other
and with the fluid for which the pressure difference is to be measured. This type of
manometer is shown in Fig. 7.6.

*  The densities of the manometric fluids are nearly equal to have a high sensitivity of

the manometer. Liquids which give sharp interfaces are commonly used, e.g,
paraffin oil and industrial alcohol, etc.

G Y

Fluid C

Fig. 7.7 : Differential Manometer (for pressure balance)
Let the flowing fluid be ‘A’ of density p, and manometric fluids be B and C of densities
Pr and pc (pe > pp), respectively [p, < py and p].

The pressure difference between two points (1 and 7) can be obtained by writing down
pressures at points 1, 2, 3, 4, 5, 6, and 7 and is given by '
P,-P, = h' (py — pa) g+h(pc—pp) g ... (1.31)
If the level of liquid in two reservoirs is approximately same, then h' = 0 and
Equation (7.31) reduces to _
Pi—P, = h(pc—py) g ... (1.32)
where h is the difference in level in the two arms/limbs of the manometer.
When the densities p, and p,. are nearly equ

_ al [(pc — pp) small], then very large values of
h can be obtained for small pressure differences,
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Alternately, the pressure at the level a — a in Fig. 7.7 must be the same in each of the
imbs and therefore,
P, +[x.pa+th' PatypPes+hpslg=P+[xps+hps+y.ps+hplg ... (7.33)
(Py—Py) = W' (pg—pa) g+h(pc—ps) g ... (7.34)
CONTINUOUS GRAVITY DECANTER 7
Decantation involves the separation of two immiscible liquids of differing densities from
one another. Basically, the difference in densities of two immiscible liquids is responsible for
such a separation.

Decanters used for the separation of two immiscible liquids are : (i) gravity decanter and
(ii) centrifugal decanter. Decanters utilize either a gravitational force or a centrifugal force to

effect the separation.

A gravity decanter is used for the separation of two immiscible liquids when the
difference between densities of the two liquids is large. A centrifugal decanter is used for the
separation of two immiscible liquids whenever the difference between densities of the two
liquids is small. The separating force (centrifugal force) in the centrifugal decanter is much

larger thar the force of gravity.
Light liquid

Light liquid

Feed (e.g. toluene) Feod

Heavy liquid
(e.g. water)

Heavy liquid
Fig. 7.8 (A) : Continuous Gravity Decanters for immiscible liquids

Separation of two immiscible liquids based on the density difference of the phases
involved is commonly encountered in the mass transfer operation such as liquid-liquid

extraction,
f\

Vent

Feed inlet

1 Y
Light liquid Heavy liquid

Fig. 7.8 (B) : Continuous Gravity Decanter
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Feed enters into the decanter at one end, two immiscible liquids flow slowly, separate
into two layers based on the density difference, and then finally the separated layers leave the
decanter through the overflow lines at the other end.

Let the densities of the heavy and light liquids be p, and pg respectively. Let the
interface between two liquids is at a height H, from the bottom of the vessel. The tot

depth of the liquid in the vessel is Hy and the depth of the layer of the light liquid is Hy, The
overflow of the light liquid is at a height H,, and that of the heavy liquid is at a height
HAl from the bottom of the vessel.

Assume that the frictional losses in the overflow discharge lines are negligible, and the
overflow lines and the vessel itself are open to the atmosphere through a vent line.

A hydrostatic balance gives

Hp.ps + Ha, .pa = Hy, .pa ...(7.35)
p ,

H, = H,, - HB.p—z ... (1.36)

Hr = Hy +H,, ... (7.37)

Hy = Hy—H,, ..(7.38)

Substituting for Hy from Equation (7.38) into Equation (7.36), we get

Hy = Hy, - (Hy—H,)) .gﬁ . (7.39)
A

Collecting the terms, we get

Hy, (1-pa/pa) = Hy, — Hy (pa/ps) ... (7.40)
H,, — Hy (PA/PB)

H, = —2 (741

T (0 palpa) = G

The above equation shows that the position of the interface between the layers in the
separator depends on the elevation of the overflow lines and on the ratio of the densities of
the two liquids.

P R U N = =
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