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4  The molecular transport of momentum, heat and mass is characterised by the same
g ol equation of the type :
d Driving force |
Resistance ... (7.95)
Molecular transport or molecular diffusion e
| | mass transfer :

These equations are applicable to laminar flow as i
| flaminar/stream line flow.

Rate of a transfer process =

quations for momentum, heat and

olecular transport is a characteristic

Newton's law for momentum transport, i.e., Newton's equation for molecular diffusion
- ofmomentum for constant density is

T, = _p“ d((ljl;p) .. (7.96)
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| Where T, is the momentum transferred per unit time per unit area, where the momentum has

the units of (kg.m)/s. [It is also called as the momentum flux], p is viscosity and p is the

density of fluid. v is the kinematic viscosity and also called as the diffusivity of momentum
and has the units of m2/s.

Fourier's law for heat transport, i.e., Fourier's equation for molecular diffusion of heat
| for constant pand C, is
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X it ti it area and is called as heat flux and has
Prs A 18 the heat transferred per unit time per unit ar

the of W/m2 [J/(m2.s)]. o is the thermal diffusivity or diffusivity of heat m m.lls. o
Fick's law of molecular mass transport or Fick's equation for molecular diffusion ot mass

. T Constang total concentration in a fluid is
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These three equation states, respectively, that (a) the momentum transport oceyp
because of a gradient in momentum concentration, (b) the energy transport occurs because of
a gradient in energy concentration, and (c) the mass transport occurs because of a gradient iy
mass concentration.

Turbulent diffusion equations for momentum, heat and mass transfer :

For combined molecular and eddy transfer, the relations for momentum, heat and magg
are :

For turbulent momentum transfer for constant density, we have

d(u, p)
sz == (”/p £ SM) de (7100)
d (p uy)
Tx = —(V+Ew (SZ | ... (7.101)

For turbulent heat transfer for constant p and C,, we have

] | d(pC,T)
qX = —fh e _‘ld_ZL- . (7.102)

For turbulent mass transfer for constant total molar concentration, we have
dC, ;‘
Jo, = —(Dag +€p) dz ... (7.103)

In the above equations, €, is the turbulent or eddy diffusivity of momentum in m?s, €, is

the turbulent or eddy diffusivity of heat or eddy thermal diffusivity in m?/s and €y is the
turbulent or eddy diffusivity of mass in m?s. Again, these equations are quite similar or
analogous to each other.

Equations (7.97), (7.98) and (7.99) for momentum, heat and mass transfer are similar (o
each other and to the general molecular transport Equation (7.95). All these equations have a
flux on the left hand side which is momentum, heat or mass transferred per unit time per unit
area and a diffusivity of momentum, heat and mass (i.e., transport properties, Vv, 0. and D)
all in m?/s, and a derivative of the concentration of a property with respect to the distance on
the right hand side. In all the above cases, the flux is proportional to the driving force. These
three molecular transport equations are mathematically identical. Thus, we say that we have
an analogy or similarity among them. Even though there is a mathematical analogy among

them, the actual physical mechanisms occurring is totally different.

The mass diffusivity Dag, the kinematic viscosity, v and thermal diffusivity, o ¢

analogous as seen from the above equations.

The similarity in nature of transfer of these three processes are referred to as ﬂnal‘:ﬁﬁ
Considering similarities between the governing equations of heat, mass ?nd morr(ljef:n 5
transfer, it is to be expected that the correlations for heat transfer co.eftlments afll o
transfer coefficients would also be similar. Various quantitative relations are availd
describe the analogical behaviour. The simplest and oldest is due to Reynolds.
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1 he basic assumption of the Reynolds analogy is that the ratio of two molecular
i fusivities equals to that of two eddy diffusivities,
0l
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For turbulent flow conditions, the Reynolds analogy equations are :

The statement of Reynolds analogy between heat and momentum transfer is :

h __h f
C,up ~ G, G~ Na=3 ... (7.105)

The statement of Reynolds analogy between mass and momentum transfer is :

t

k f

C

) ... (7.106)

Therefore, the complete Reynolds analogy is

h ke f
= =75 .. (7.107
Coup u 2 ( )
f
Ny = Ny, =3 ' ... (7.108)

here f is the Fanning friction factor (a measure of skin friction), u is the average velocity of

g lud k. is the convective mass transfer coefficient, h is the convective heat transfer
“efficient,

Equation (7.107) agrees well with the experimental data (correlates data) for gases in
Eurb“'ffnt flow if the Schmidt and Prandtl numbers are about unity and only the skin friction
Pesent in g flow past a flat plate or inside pipe. The equations do not correlate the data for

[‘%mdx In turbulent flow nor for any fluids in laminar flow, i.e., in such cases the analogy is
valig

Although the Reynolds analogy is of limited utility, the significant conclusion that may
"awn is the mechanisms for momentum, heat and mass are identical at Ny, = Ns. = 1.0.

Ity Measure of the skin friction, i.e., the fanning friction factor is known, the analogy

b . .
¢ Use ' oeffici ; ass transfer coefficient and
Ve, Used to find the heat transfer coefficient from the mass transfer ¢

V" Jtr'\a. ‘
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0106, _ 473 x 10-kmol Hy/m?
.. C,, at the inner surface of the pipe = 2.4

At the outer surface, Cj =0 -
The rate of loss of hydrogen per I m length Aof the ([:) P]h‘
w =Nu- Agyg. = Dy Aavg. [Car— Cadl2

_ 18x%1010x0.1133 (473X 10-2—0)/0.0125

— 17.72 x 102 kmol H,/s per m -

Some Important Definitions :

1. Gram mole : It is defined
equal to its molecular weight. N _
In this book, gram mole and kilogram mole are specified as mol and kmol respectively,

2. Weight fraction : It is the ratio of the weight of the individual componen; y,
the total weight of the system. It is denoted by the symbol X'.

as the mass in grams of a substance that is numerically

For two component system : X, + x; = 1.0.

Weight % of A = Weight fraction of A X 100

3. Mole fraction : It is the ratio of the moles of the individual component to the tot]
moles of the system. It is denoted by the symbol x.

For a binary system of A and B : x,+ xg = 1.0.
Mole % of A = mole fraction of A x 100.

4. More volatile component : It is the component with a lower boiling point or with g

higher vapour pressure at a given temperature (in a binary system). It is also called as the
lighter component.

In case of distillation, the compositions of vapour and liquid phases are expressed in
terms of mole fraction of the more volatile component.

S. Less volatile component : In a binary system, it is the component with a higher

boiling point or with a lower vapour pressure at a given temperature. It is also called as the
heavier component.

6. Vapour pressure : The vapour pressure of a liquid is defined as the absolue |
pressure at which the liquid and its vapour are in equilibrium at a given temperature.

7 Pa‘rtial pressure : The partial pressure of a component gas that is present in 8 H
mixture of gases in the pressure that would be exerted by that component if it alone wert |
present in the same volume and at the same temperature as the mixture.

8. Ideal gas law : The ideal gas law is given by
PV = nRT
if P is in kPa, V in m’, n in kmol and T in K then R will be in m? kPa/(kmol- K).
R (universal gas constant) = 8.31451 m?- kPa/(kmol-K)

s
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P is the total pressure exerted b
Wesqufes of component gases A, B, C, .

e product of the vapour pressyre and t
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| 9 palton's law : Mathematically, Dalt Diffusion

' 4 .
on's law is given by

s pA+pB+pc+

Y a gas MiXture and Pa

X . Ps, Pc ... are the partial
-+ Present in the Mmixture, b

10. Raoult's law : It states that the

0 ion of A in the liquid phase.
Pa = pA ' Xa

s also related to y, by the following €quation

Pa = y,-P
yais the mole fraction of A in the gas phase.

11. Henry's law : Mathematically Henry's law is given as
P = Hx,

where H is the Henry's law constant.

Henry's law expresses the relationship between the concentration of a gas dissolved in a

liquid and the equilibrium partial pressure of the gas above the liquid surface.

12. Gibb's phase rule : It is the relationship that governs all heterogeneous equilibria. It

is given by

F =C-P+2
where C = number of components

P = number-of phases

Fis the number of degrees of freedom or number of intensive variables (temperature,
pressure, composition) that must be specified so that remaining variables will be fixed
dutomatically and the system will be defined completely.

EXERCISES

. Give the mathematical statement of Fick's law of diffusion and give the meaning of
each terms involved in it.
2. Define :

(1) Mass fraction,

(ii)  Mole fraction,

(iii) Molar concentration,

(iv) Mass average velocity, and

(V) Molar average velocity.

3 Define ;: Mass flux and Molar flux lan‘tiit "
fluxes relative to the mass average velocity

give the expressions for Mass and Molar
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4.

bl I

10.
11.
12.
13.

Define Diffusion, Molecular diffusion, Eddy/turbulent diffusion and explain brieﬂy
the role of diffusion in mass transfer. .

Explain briefly analogy between heat, mass and momentum.
Explain briefly Reynolds analogy.

Show that for equimolar counter diffusion, Dag = Dga.
State the Fick's law of diffusion. '

Give the mathematical expression for analogy between heat, mass and momentyp
transport for laminar and turbulent flow. Give the meaning of each term.

Define mass transfer coefficient. Give its SI unit.
What do you mean by interphase mass transfer ?
State salient features of two-film theory.

Explain the controlling film concept.

000
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