Bapuji Educational Association (Regd.) BAPUJI INSTITUTE OF ENGINEERING AND TECHNOLOGY, DAVANAGERE-04 DEPARTMENT OF MATHEMATICS Question Bank

Calculus and Linear Algebra (18MAT11)

- 1. With usual notation, prove that $tan\phi = r\left(\frac{d\theta}{dr}\right)$.
- 2. Find the angle between two curves $r = a(1 \cos \theta)$ and $r = 2a \cos \theta$.
- 3. Show that the curves $r^n = a^n cosn\theta$ and $r^n = b^n sinn\theta$ are intersect orthogonally.
- 4. Find the Pedal equation of the curve $r^m = a^m cosm\theta$.
- 5. Find the Pedal equation of the curve $\frac{2a}{r} = (1 + \cos\theta)$.
- 6. Find the radius of curvature for the curve $x^2 y = a(x^2 + y^2)$ at the point (-2a,2a)
- 7. Find the Radius of curvature of the curve $y^2 = \frac{4a^2(2a-x)}{x}$ where the curve meets x-axis.
- 8. Show that for the curve $(1 \cos\theta) = 2a$, ρ^2 varies as r^3 .
- 9. Find the Centre of Curvature for the parabola $y^2 = 4ax$ and hence find its Evolute.
- **10.** Find the Circle of Curvature for the curve $\sqrt{x} + \sqrt{y} = \sqrt{a} \operatorname{at}\left(\frac{a}{4}, \frac{a}{4}\right)$.
- 11. Expand $tan^{-1}x$ in powers of (x 1) upto fourth degree terms.
- 12. Using Maclaurin's expansion, prove that $\sqrt{1 + \sin 2x} = 1 + x \frac{x^2}{2} \frac{x^3}{6} + \dots$
- 13. Using Maclaurin's series expand $\log (1 + e^x)$ upto term containing x^4 .
- 14. Evaluate a) $\lim_{x \to 0} \left(\frac{a^x + b^x + c^x + d^x}{4} \right)^{\frac{1}{x}}$ b) $\lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{\frac{1}{x^2}}$ c) $\lim_{x \to 0} \left(\frac{(1+x)^{1/x} e}{x} \right)$ 15. If $z = e^{ax + by} f(ax - by)$ then P.T. $b \frac{\partial z}{\partial x} + a \frac{\partial z}{\partial y} = 2abz$. 16. If u = f(x - y, y - z, z - x) then Show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$. 17. If $u = f\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$ then prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0$ 18. If $u = x^2 + y^2 + z^2$, v = xy + yz + zx, w = x + y + z, then find $J\left(\frac{u, v, w}{x, y, z}\right)$. 19. Find the extreme values of the function $f(x, y) = x^3y^2(1 - x - y)$ for $x, y \neq 0$.

20. Find the stationary values of $x^2 + y^2 + z^2$ subject to the condition $xy + yz + zx = 3a^2$. **21.** Evaluate $\int_0^1 \int_x^{\sqrt{x}} xy \, dy dx$ by changing order of integration. 22. Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^2-y^2}} (y\sqrt{x^2+y^2}) dx dy$ by changing into Polar coordinates. **23.** Evaluate $\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dx dy$ by changing to polar coordinates. **24.** Evaluate $\int_0^a \int_0^x \int_0^{x+y} e^{(x+y+z)} dz dy dx$. **25.** Evaluate $\int_{-c}^{c} \int_{-b}^{b} \int_{-a}^{a} (x^2 + y^2 + z^2) dz dy dx$. **26.** Find the area bounded between parabolas $y^2 = 4ax$ and $x^2 = 4ay$ using double integration. 27. Find the area of the Ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ by double integration. **28.** Prove that $\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$. **29.** Prove that $\int_0^{\frac{\pi}{2}} \sqrt{\sin \theta} \ d\theta \ X \int_0^{\frac{\pi}{2}} \frac{1}{\sqrt{\sin \theta}} \ d\theta = \pi$. **30.** Solve $(y^3 - 3x^2y)dx - (x^3 - 3xy^2)dy = 0$ **31.** Solve y(2x - y + 1)dx + x(3x - 4y + 3)dy = 0. 32. Solve (ylog x - 2)ydx = xdy. **33.** Solve $\frac{dy}{dx} = \frac{x+y+1}{2x+2y+3}$. **34.** Solve $(x^2y^3 + xy)\frac{dy}{dx} = 1$. 35. Solve $\frac{dy}{dx} + \frac{y\cos x + \sin y + y}{\sin x + x\cos y + x} = 0$. **36.** Solve $\frac{dy}{dx} + xsin^2y = x^3cos^2y$. 37. Find the orthogonal trajectories of the family $\frac{x^2}{a^2} + \frac{y^2}{a^2 + \lambda} = 1$ where λ is parameters.

- **38.** Find the orthogonal trajectory of the family $r^n cosn\theta = a^n$.
- **39.** A body originally at $80^{\circ}C$ cools to $60^{\circ}C$ in 20 minutes the temperature of air being $40^{\circ}C$. What will be the temperature of the body after 40 minutes.
- **40.** Solve $p^2 2psinhx 1 = 0$.

- **41.** Obtain the General solution and Singular solution of equation $xp^3 yp^2 + 1 = 0$ as Clairaut's equation.
- 42. Solve (px y)(py + x) = 2p by reducing into Clairaut's form taking substitution $X = x^2, Y = y^2.$ iii) No solution.

43. Find the Rank of the matrix
$$A = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & -2 & 1 \\ 1 & -1 & 4 & 0 \\ -2 & 2 & 8 & 0 \end{bmatrix}$$
 by reducing it into Echelon form.

44. For what values of λ and μ the system of equations x + y + z = 6, x + 2y + 3z = 10, $x + 2y + \lambda z = \mu$ may have i) Unique solution ii) Infinite number of solutions

- 45. Solve the system of equations x + y + z = 9, x 2y + 3z = 8, 2x + y z = 3 by Gauss elimination method.
- 46. Solve by using Gauss-Jordon method

x + y + z = 9,2 x + y - z = 0,2x + 5y + 7z = 52.

47. Solve the system of equations by Gauss Seidel Method

x + y + 54z = 110, 27x + 6y - z = 85, 6x + 15y + 2z = 72.

48. Find the Largest Eigen value and the corresponding Eigen vector of $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$

using power method .Take $[1,1,1]^T$ as initial vector .

49. Find the Largest Eigen value and the corresponding Eigen vector of

$$A = \begin{bmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{bmatrix}$$
 using power method .Take $[1,0,0]^T$ as initial vector.

50. Reduce the matrix
$$A = \begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix}$$
 into Diagonal form.