
Object Oriented Modeling and Design patterns

OBJECT ORIENTED MODELING AND DESING PATTERNS

MCA DEPT, BIET

SYLLABUS 1st and 2nd Chapter

1. Introduction, Modeling Concepts: What is Object Orientation? What is OO development? OO themes;

Evidence for usefulness of OO development; OO modeling history.
Modeling as Design Technique: Modeling; abstraction; The three models

2. Class Modeling and Advanced Class Modeling: Object and class concepts; Link and associations

concepts; Generalization and inheritance; A sample class model; Navigation of class models; Practical

tips. Advanced object and class concepts; Association ends; N-array associations; Aggregation;

Abstract classes; Multiple inheritance; Metadata; Reification; Constraints; Derived data;

Packages; Practical tips

TEXT BOOKS:

Text Books:

1. Michael Blaha, James Rumbaugh: Object-Oriented Modeling and Design with UML, 2nd Edition, Pearson

Education / PHI, 2005. (Chapters 1 to 15)

2. Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, Michael Stal: Pattern-Oriented

Software Architecture, A System of Patterns, Volume 1, John Wiley and Sons, 2006. (Chapters 1, 3)

Reference Books:

1. Grady Booch et al: Object-Oriented Analysis and Design with Applications, 3rd Edition, Pearson, 2007.

2. Mark Priestley: Practical Object-Oriented Design with UML, 2nd Edition, Tata McGraw-Hill, 2003.

3. K. Barclay, J. Savage: Object-Oriented Design with UML and JAVA, Elsevier, 2008.

4. Booch, G., Rumbaugh, J., and Jacobson, I.: The Unified Modeling Language User Guide, 2nd Edition,

Pearson, 2005.

5. E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns-Elements of Reusable Object- Oriented

Software, Addison-Wesley, 1995.

6. Simon Bennett, Steve McRobb and Ray Farmer: Object-Oriented Systems Analysis and Design Using

UML, 2nd Edition, Tata McGraw-Hill, 2002.

7. Rumbaugh, Blaha, Premerhani, Eddy, Lorensen; Object Oriented Modeling and Design, PHI Latest Edition

 Page 1

Object Oriented Modeling and Design patterns

Unit1: Introduction, Modeling Concepts:

INTRODUCTION

Note 1:

Intention of this subject (object oriented modeling and design) is to learn how to

apply object -oriented concepts to all the stages of the software development life

cycle.

Note 2:

Object-oriented modeling and design is a way of thinking about problems using

models organized around real world concepts. The fundamental construct is the

object, which combines both data structure and behavior.

WHAT IS OBJECT ORIENTATION?

_Definition: OO means that we organize software as a collection of discrete objects

(that incorporate both data structure and behavior).

_ There are fouraspects (characteristics) required by an OO approacho

Identity.

 Classification.

 Inheritance.

 Polymorphism.

_Identity:

 Identity means that data is quantized into discrete, distinguishable entities

called objects.

 E.g. for objects: personal computer, bicycle, queen in chess etc.

Object Oriented Modeling and Design patterns

 Objects can be concrete (such as a file in a file system) or conceptual (such

as scheduling policy in a multiprocessing OS). Each object has its own inherent

identity. (i.e two objects are distinct even if all their attribute values are identical).

 In programming languages, an object is referenced by a unique handle.

_Classification:

 Classification means that objects with the same data structure (attribute) and

behavior (operations) are grouped into a class.

 E.g. paragraph, monitor, chess piece.

 Each object is said to be an instance of its class.

 Fig below shows objects and classes: Each class describes a possibly infinite

set of individual objects.

Inheritance:

 It is the sharing of attributes and operations (features) among classes based

on a hierarchical relationship. A super class has general information that sub classes

refine and elaborate.

 E.g. Scrolling window and fixed window are sub classes of window.

_Polymorphism:

 Polymorphism means that the same operation may behave differently for

different classes.

 For E.g. move operation behaves differently for a pawn than for the queen in

a chess game.

Object Oriented Modeling and Design patterns

Note: An operation is a procedure/transformation that an object performs or is

subjected to. An implementation of an operation by a specific class is called a

method.

WHAT IS OO DEVELOPMENT?

_Development refers to the software life cycle: Analysis, Design and

Implementation. The essence of OO Development is the identification and

organization of application concepts, rather than their final representation in a

programming language. It’s a conceptual process independent of programming

languages. OO development is fundamentally a way of thinking and not a

programming technique.

OO methodology

_ Here we present a process for OO development and a graphical notation for

representing OO concepts. The process consists of building a model of an

application and then adding details to it during design.

_The methodology has the following stages

 System conception: Software development begins with business analysis or

users conceiving an application and formulating tentative requirements.

 Analysis: The analyst scrutinizes and rigorously restates the requirements

from the system conception by constructing models. The analysis model is a concise,

precise abstraction of what the desired system must do, not how it will be done.

 The analysis model has two parts-

Object Oriented Modeling and Design patterns

 _ Domain Model- a description of real world objects reflected within the

system.

 _ Application Model- a description of parts of the application system itself

that are visible to the user.

 E.g. In case of stock broker application-

 Domain objects may include- stock, bond, trade & commission.

 Application objects might control the execution of trades and present the

results.

 System Design: The development teams devise a high-level strategy- The

System Architecture- for solving the application problem. The system designer

should decide what performance characteristics to optimize, chose a strategy of

attacking the problem, and make tentative resource allocations.

 Class Design: The class designer adds details to the analysis model in

accordance with the system design strategy. His focus is the data structures and

algorithms needed to implement each class.

 Implementation: Implementers translate the classes and relationships

developed during class design into a particular programming language, database or

hardware. During implementation, it is important to follow good software

engineering practice.

Three models

_ We use three kinds of models to describe a system from different view points.

1. Class Model—for the objects in the system & their relationships.

It describes the static structure of the objects in the system and their

relationships.

Class model contains class diagrams- a graph whose nodes are classes and arcs

are relationships among the classes.

2. State model—for the life history of objects.

It describes the aspects of an object that change over time. It specifies and

implements control with state diagrams-a graph whose nodes are states and whose

arcs are transition between states caused by events.

3. Interaction Model—for the interaction among objects.

It describes how the objects in the system co-operate to achieve broader results.

This model starts with use cases that are then elaborated with sequence and activity

diagrams.

Use case – focuses on functionality of a system – i.e what a system does for

users.

Sequence diagrams – shows the object that interact and the time sequence of their

interactions.

Activity diagrams – elaborates important processing steps.

Object Oriented Modeling and Design patterns

OO THEMES
Several themes pervade OO technology. Few are –

1. Abstraction

 Abstraction lets you focus on essential aspects of an application while

ignoring details i.e focusing on what an object is and does, before deciding how to

implement it.

 It’s the most important skill required for OO development.

2. Encapsulation (information hiding)

 It separates the external aspects of an object (that are accessible to other

objects) from the internal implementation details (that are hidden from other objects)

 Encapsulation prevents portions of a program from becoming so

interdependent that a small change has massive ripple effects.

3. Combining data and behavior

 Caller of an operation need not consider how many implementations exist.

 In OO system the data structure hierarchy matches the operation inheritance

 hierarchy (fig).

4. Sharing

 OO techniques provide sharing at different levels.

 Inheritance of both data structure and behavior lets sub classes share

common code.

 OO development not only lets you share information within an application,

but also offers the prospect of reusing designs and code on future projects.

5. Emphasis on the essence of an object

 OO development places a greater emphasis on data structure and a lesser

emphasis on procedure structure than functional-decomposition methodologies.

6. Synergy

 Identity, classification, polymorphism and inheritance characterize OO

languages.

Object Oriented Modeling and Design patterns

 Each of these concepts can be used in isolation, but together they

complement each other synergistically.

MODELLING AS A DESIGN TECHNIQUE

Note: A model is an abstraction of something for the purpose of understanding it

before building it.

MODELLING

_ Designers build many kinds of models for various purposes before constructing

things.

_ Models serve several purposes–

Testing a physical entity before building it: Medieval built scale models of

Gothic Cathedrals to test the forces on the structures. Engineers test scale models of

airplanes, cars and boats to improve their dynamics.

Communication with customers: Architects and product designers build

models to show their customers (note: mock-ups are demonstration products that

imitate some of the external behavior of a system).

Visualization: Storyboards of movies, TV shows and advertisements let

writers see how their ideas flow.

Reduction of complexity: Models reduce complexity to understand directly

by separating out a small number of important things to do with at a time.

ABSTRACTION

_Abstraction is the selective examination of certain aspects of a problem.

_ The goal of abstraction is to isolate those aspects that are important for some

purpose and suppress those aspects that are unimportant.

OO modeling history (page number : 09)

THE THREE MODELS

1. Class Model: represents the static, structural, “data” aspects of a system.

 It describes the structure of objects in a system- their identity, their

relationships to other objects, their attributes, and their operations.

 Goal in constructing class model is to capture those concepts from the real

world that are important to an application.

 Class diagrams express the class model.

2. State Model: represents the temporal, behavioral, “control” aspects of a

system.

 State model describes those aspects of objects concerned with time and the

sequencing of operations – events that mark changes, states that define the context

for events, and the organization of events and states.

 State diagram express the state model.

 Each state diagram shows the state and event sequences permitted in a

system for one class of objects.

 State diagram refer to the other models.

Object Oriented Modeling and Design patterns

 Actions and events in a state diagram become operations on objects in the

class model. References between state diagrams become interactions in the

interaction model.

3. Interaction model – represents the collaboration of individual objects, the

“interaction” aspects of a system.

 Interaction model describes interactions between objects – how individual

objects collaborate to achieve the behavior of the system as a whole.

 The state and interaction models describe different aspects of behavior, and

you need both to describe behavior fully.

 Use cases, sequence diagrams and activity diagrams document the interaction

model.

---------------------------------oooooooo-----------------------

Unit 2: Class Modeling and Advanced Class Modeling
CLASS MODELLING

Note: A class model captures the static structure of a system by characterizing the

objects in the system, the relationships between the objects, and the attributes and

operations for each class of objects.

OBJECT AND CLASS CONCEPT

Objects

_ Purpose of class modeling is todescribe objects.

_ Anobject is a concept, abstraction or thing with identity that has meaning for an

application.

Ex: Joe Smith, Infosys Company, process number 7648 and top window are objects.

Classes

_ An object is an instance or occurrence of a clas.s

_ Aclass describes a group of objects with the same properties (attributes), behavior

(operations), kinds of relationships and semantics.

Ex: Person, company, process and window are classes.

Note: All objects have identity and are distinguishable. Two apples with same color,

shape and texture are still individual apples: a person can eat one and then the other.

The term identity means that the objects are distinguished by their inherent existence

and not by descriptive properties that they may have.

Object Oriented Modeling and Design patterns

CLASS MODELLING

• OBJECT AND CLASS CONCEPT

• An oobbjjeecctt has three characteristics: ssttaattee,
bbeehhaavviioorr and aa uunniiqquuee iiddeennttiiffiiccaattiioonn. or

• An object is a concept, abstraction or thing
with identity that has meaning for an
application. Eg:

• Note: The term

identity means
that the objects are

distinguished by their

inherent existence and

not by descriptive

properties that they
may have.

Class diagrams

_Class diagrams provide a graphic notation for modeling classes and their

relationships, thereby describing possible objects.

Note: An object diagram shows individual objects and their relationships.

Useful for documenting test cases and discussing examples.

_ Class diagrams are useful both for abstract modeling and for designing actual

programs.

Note: A class diagram corresponds to infinite set of object diagrams.

_ Figure below shows a class (left) and instances (right) described by it.

_Conventions used (UML):

 UML symbol for both classes and objects is box.

 Objects are modeled using box with object name followed by colon followed

by class name.

 Use boldface to list class name, center the name in the box and capitalize the

first letter. Use singular nouns for names of classes.

 To run together multiword names (such as JoeSmith), separate the words

with

 intervening capital letter.

Values and Attributes: _Value

is a piece of data.

Object Oriented Modeling and Design patterns

Attribute is a named property of a class that describes a value held by each object of

the class.

_ Following analogy holds:

Object is to class as value is to attribute.

_ E.g. Attributes: Name, bdate, weight.

Values: JoeSmith, 21 October 1983, 64. (Of person object).

_ Fig shows modeling notation

_Conventions used (UML):

 List attributes in the 2nd compartment of the class box. Optional details (like

default value) may follow each attribute.

 A colon precedes the type, an equal sign precedes default value.

 Show attribute name in regular face, left align the name in the box and use

small case for the first letter.

_ Similarly we may also include attribute values in the 2nd compartment of

object boxes with same conventions.

Note: Do not list object identifiers; they are implicit in models.

E.g.

An operation is a function or procedure that maybe applied to or by objects in a

class.

E.g. Hire, fire and pay dividend are operations on Class Company. Open, close, hide

and redisplay are operations on class window.

_ Amethod is the implementation of an operation for a class.

E.g. In class file, print is an operation you could implement different methods to

print files.

_Note: Same operation may apply to many different classes. Such an operation is

polymorphic.

_ Fgi shows modeling notation.

Object Oriented Modeling and Design patterns

_UML conventions used –

letter.

name.

List operations in 3rd compartment of class box.

List operation name in regular face, left align and use lower case for first

Optional details like argument list and return type may follow each operation

Parenthesis enclose an argument list, commas separate the arguments. A

colon precedes the result type.

_Note: We do not list operations for objects, because they do not vary among

objects of same class.

Summary of Notation for classes

Fig: Summary of modeling notation for classes

Fig: Notation for an argument of an operation

Object Oriented Modeling and Design patterns

Class Digarms: Relationships

• Classes can related to each other through

different relationships:

– Dependency Class1 Class2

– Association (delegation) Class1 Class2

– Generalization (inheritance) Base sub

– Realization (interfaces) Base sub

1) Dependency: A Uses Relationship

• Dependencies

– occurs when one object depends on another

– if you change one object's interface, you

need to change the dependent object

– arrow points from dependent to needed

objects

Jukebox

CardReader

CDCollection

SongSelector

Object Oriented Modeling and Design patterns

LINK AND ASSOCIATION CONCEPTS

Note: Links and associations are the means for establishing relationships among

objects and classes.

Links and associations

_ Alink is a physical or conceptual connection among objects.

E.g. JoeSmith WorksFor Simplex Company.

_ Mathematically, we define a link as a tuple– that is, a list of objects.

_ A link is an instance of anassociation.

_ Anassociation is a description of a group of links with common structure and

common semantics.

E.g. a person WorksFor a company.

_ An association describes a set of potential links in the same way that a class

describes a set of potential objects.

_ Fig shows man-yto-many association (model for a financial application).

_Conventions used (UML):

 Link is a line between objects; a line may consist of several line segments.

 If the link has the name, it is underlined.

 Association connects related classes and is also denoted by a line.

 Show link and association names in italics.

_Note:

Object Oriented Modeling and Design patterns

 Association name is optional, if the model is unambiguous. Ambiguity arises

when a model has multiple associations among same classes.

 Developers often implement associations in programming languages as

references from one object to another. A reference is an attribute in one object that

refers to another object.

Object Oriented Modeling and Design patterns

Multiplicity

_Multiplicity specifies the number of instances of one class that may relate to a

single instance of an associated class. Multiplicity constrains the number of related

objects.

_UML conventions:

 UML diagrams explicitly lists multiplicity at the ends of association lines.

 UML specifies multiplicity with an interval, such as

“1” (exactly one).

“1..”(one or more).

“3..5”(three to five, inclusive).

“ * ” (many, i.e zero or more).

• notations

1
Class

0..*
Class

0..1

Class

m..n
Class

Example:

exactly one

many

(zero or more)

optional

(zero or one)

numerically

Specified
(m to n, inclucive)

0..*
Course CourseOffering

1

Object Oriented Modeling and Design patterns

_ Previous figure illustrates man-yto-many multiplicity. Below figure illustrates

one-to-one multiplicity.

_ Below figure illustrates zero-or-one multiplicity.

_Note 1: Association vs Link.

Object Oriented Modeling and Design patterns

Multiplicity of Associations
• Many-to-one

– Bank has many ATMs, ATM knows only 1 bank

• One-to-many

– Inventory has many items, items know 1 inventory

Object Oriented Modeling and Design patterns

Association – Multiplicity

• A teacher teaches 1 to 3 courses (subjects)

• Each course is taught by only one teacher.

• A student can take between 1 to 5 courses.

• A course can have 10 to 300 students.

Teacher

1 Teaches 1..3

Course

1..5

Students
Takes

10..300

Object Oriented Modeling and Design patterns

_Note 2: Multiplicity vs Cardinality.

 Multiplicity is a constraint on the size of a collection.

 Cardinality is a count of elements that are actually in a collection.

Therefore, multiplicity is a constraint on cardinality.

_Note 3: The literature often describes multiplicity as being “one” or “many”,

but more generally it is a subset of the non negative numbers.

Association end names

_ Multiplicity implicitly refers to the ends of associations. For E.g. A on-eto-

many association has two ends –

 an end with a multiplicity of “one”

 an end with a multiplicity of “many”

You can not only assign a multiplicity to an association end, but you can give it a

name as well.

Object Oriented Modeling and Design patterns

A person is an employee with respect to company.

A company is an employer with respect to a person.

_Note 1: Association end names are optional.

_Note 2: Association end names are necessary for associations between two objects

of the same class. They can also distinguish multiple associations between a pair of

classes.

E.g. each directory has exactly one user who is an owner and many users who are

authorized to use the directory. When there is only a single association between a

pair of distinct classes, the names of the classes often suffice, and you may omit

association end names.

_Note 3: Association end names let you unify multiple references to the same class.

When constructing class diagrams you should properly use association end names

and not introduce a separate class for each reference as below fig shows.

Sometimes, the objects on a “many” association end have an explicit order.

E.g. Workstation screen containing a number of overlapping windows. Each window

on a screen occurs at most once. The windows have explicit order so only the top

most windows are visible at any point on the screen.

_Ordering is an inherent part of association. You can indicate an ordered set of

objects by writing “{ordered}” next to the appropriate association end.

Object Oriented Modeling and Design patterns

Fig: ordering sometimes occurs for “many” multiplicity

Bags and Sequences

_ Normally, a binary asscoiation has at most one link for a pair of objects.

_ However, you can permitmultiple links for a pair of objects by annotating an

association end with {bag} or {sequence}.

_ Abag is a collection of elements with duplicates allowed.

_ Asequence is an ordered collection of elements with duplicates allowed.

Example:

fig: an itinerary may visit multiple airports, so you should use {sequence} and not

{ordered}

_Note: {ordered} and {sequence} annotations are same, except that the first

disallows duplicates and the other allows them.

Association classes

_ Anassociation class is an association that is also a class.

Like the links of an association, the instances of an association class derive identity

from instances of the constituent classes.

Like a class, an association class can have attributes and operations and participate in

associations.

_ Ex:

_UML notation for association class is a box attached to the association by a

dashed line.

_Note: Attributes for association class unmistakably belong to the link and cannot

be ascribed to either object. In the above figure, accessPermission is a joint property

of File and user cannot be attached to either file or user alone without losing

information.

Object Oriented Modeling and Design patterns

_ Below figure presents attributes for two on-eto-many relationships. Each person

working for a company receives a salary and has job title. The boss evaluates the

performance of each worker. Attributes may also occur for one-to-one associations.

_Note 1: Figure shows how it’s possible to fold attributes for one-to-one and one-

to-many associations into the class opposite a “one” end. This is not possible for

many-to-many associations.

As a rule, you should not fold such attributes into a class because the multiplicity of

the association may change.

_Note 2: An association class participating in an association.

_Note 3: Association class vs ordinary class.

Object Oriented Modeling and Design patterns

eg:

Qualified associations

_ A Qualified Association is an association in which an attribute called the

qualifier disambiguates the objects for a “many” association ends. It is possible to

define qualifiers for one-to-many and many-to-many associations.

_ A qualifier selects among the target objects, reducing the effective multiplicity

from “many” to “one”.

_Ex 1: qualifier for associations with one to many multiplicity. A bank services

multiple accounts. An account belongs to single bank. Within the context of a bank,

the Account Number specifies a unique account. Bank and account are classes, and

Account Number is a qualifier. Qualification reduces effective multiplicity of this

association from one-to-many to one-to-one.

Object Oriented Modeling and Design patterns

Fig: qualification increases the precision of a model. (note: however, both are

acceptable)

_Ex 2: a stock exchange lists many companies. However, it lists only one company

with a given ticker symbol. A company maybe listed on many stock exchanges,

possibly under different symbols.

Eg 3: Qualified Association

Object Oriented Modeling and Design patterns

GENERALIZATION AND INHERITANCE

_Generalization is the relationship between a class (the superclass) and one or

more variations of the class (the subclasses). Generalization organizes classes by

their similarities and differences, structuring the description of objects.

_ The superclass holds common attributes, operations and associations; the

subclasses add specific attributes, operations and associations. Each subclass is said

to inherit the features of its superclass.

_ There can bemultiple levels of generalization.

_ Figa() and Fig(b) (given in the following page) shows examples of generalization.

_Fig(a) – Example of generalization for equipment.

Each object inherits features from one class at each level of generalization.

_UML convention used:

Use large hollow arrowhead to denote generalization. The arrowhead points to

superclass.

_Fig(b) – inheritance for graphic figures.

The word written next to the generalization line in the diagram (i.e dimensionality) is

a generalization set name. A generalization set name is an enumerated attribute that

indicates which aspect of an object is being abstracted by a particular generalization.

It is optional.

Object Oriented Modeling and Design patterns

Fig(a)

Object Oriented Modeling and Design patterns

Fig (b)

‘move’, ‘select’, ‘rotate’, and ‘display’ are operations that all subclasses inherit.

‘scale’ applies to one-dimensional and two-dimensional figures.

‘fill’ applies only to two-dimensional figures.

_Use of generalization: Generalization has three purposes –

1. To support polymorphism: You can call an operation at the superclass

level, and the OO language complier automatically resolves the call to the method

that matches the calling object’s class.

2. To structure the description of objects: i.e to frame a taxonomy and

organizing objects on the basis of their similarities and differences.

3. To enable reuse of code: Reuse is more productive than repeatedly writing

code from scratch.

_Note: The terms generalization, specialization and inheritance all refer to aspects

of the same idea.

Overriding features

_ A subclass may override a superclass feature by defining a feature with the same

name. The overriding feature (subclass feature) refines and replaces the overridden

feature (superclass feature) .

_ Why override feature?

 To specify behavior that depends on subclass.

 To tighten the specification of a feature.

Object Oriented Modeling and Design patterns

 To improve performance.

_ In fig(b) (previous page) each leaf subclasses had overridden ‘display’ featrue.

_Note: You may override methods and default values of attributes. You should

never override the signature, or form of a feature.

A SAMPLE CLASS MODEL

NAVIGATION OF CLASS MODELS

_ Class models are useful for more than just data structure. In particular, navigation

of class model lets you express certain behavior. Furthermore, navigation exercises

a class model and uncovers hidden flaws and omission, which you can then repair.

_ UML incorporates a language that can be used for navigation, the object

constraint language(OCL).

Object Oriented Modeling and Design patterns

_

OCL constructs for traversing class models

OCL can traverse the constructs in class models.

1. Attributes: You can traverse from an object to an attribute value.

Syntax: source object followed by dot and then attribute name.

Ex: aCreditCardAccount.maximumcredit

2. Operations: You can also invoke an operation for an object or collection of

objects. Syntax: source object or object collection, followed by dot and then the

operation followed by parenthesis even if it has no arguments. OCL has special

operations that operate on entire collections (as opposed to operating on each object

in a collection). Syntax for collection operation is: source object collection followed

by “->”, followed by the operation.

3. Simple associations: Dot notation is also used to traverse an association to a

target end. Target end maybe indicated by an association end name, or class name (

if there is no ambiguity).

Ex: refer fig in next page.

 aCustomer.MailingAddress yields a set of addresses for a customer (

the target end has “many” multiplicity).

 aCreditCardAccount.MailingAddress yields a single address(the

target end has multiplicity of “one”).

4. Qualified associations: The expression aCreditCardAccount.Statement [30

November 1999] finds the statement for a credit card account with the statement date

of November 1999. The syntax is to enclose the qualifier value in brackets.

5. Associations classes: Given a link of an association class, you can find the

constituent objects and vice versa.

6. Generalization: Traversal of a generalization hierarchy is implicit for the

OCL notation.

7. Filters: Most common filter is ‘select’ operation.

Ex: aStatement.Transaction->select(amount>$100).

Examples of OCL expressions

Object Oriented Modeling and Design patterns

_ Write an OCL expression for–

1. What transactions occurred for a credit card account within a time

interval?

Soln: aCreditCardAccount.Statement.Transaction ->

select(aStartDate<=TransactionDate and

TransactionDate<=anEndDate)

2. What volumes of transactions were handled by an institution in the last

year?

Soln: anInstitution.CreditCardAccount.Statement.Transaction ->

select(aStartDate<=TransactionDate and TransactionDate<=anEndDate).amount-

>sum()

3. What customers patronized a merchant in the last year by any kind of

credit card?

Soln: aMerchant.Purchase -> select(aStartDate<=TransactionDate

andtransactionDate<=anEndDate).Statement.CreditCardAccount.MailingAddress.Cu

stomer ->asset()

4. How many credit card accounts does a customer currently have?

Soln: aCustomer.MailingAddress.CreditCardAccount -> size()

5. What is the total maximum credit for a customer for all accounts?

Soln: acustomer.MailingAddress.CreditCardAccount.Maximumcredit -> sum()

Object Oriented Modeling and Design patterns

Advanced Class Modeling

2.1 Advanced object and class concepts

2.1.1 Enumerations

A data type is a description of values, includes numbers, strings, enumerations

Enumerations: A Data type that has a finite set of values.

 When constructing a model, we should carefully note enumerations, because they

often occur and are important to users.

 Enumerations are also significant for an implantation; we may display the possible

values with a pick list and you must restrict data to the legitimate values.

 Do not use a generalization to capture the values of an Enumerated attribute.

 An Enumeration is merely a list of values; generalization is a means for structuring

the description of objects.

 Introduce generalization only when at least one subclass has significant attributes,

operations, or associations that do not apply to the superclass.

 In the UML an enumeration is a data type.

 We can declare an enumeration by listing the keyword enumeration in guillemets

(<< >>) above the enumeration name in the top section of a box. The second section

lists the enumeration values. (Diagram page number 60 fig 4.1)

 Eg: Boolean type= { TRUE, FALSE}

 Eg: figure.pentype ______ - - - - - --------

 Two diml.filltype

Object Oriented Modeling and Design patterns

Card

rank

Wrong

Spades Clubs Hearts Diamonds

Correct

Card

rank: rank
suit: suit

<<enumeration>>

Suit

Clubs

Hearts

Diamonds

Spades

<<enumeration>>

Rank

King
Queen

…..

Modeling enumerations. Do not use a generalization to capture the values

of an enumerated attribute

2.1.2 Multiplicity

 Multiplicity is a collection on the cardinality of a set, also applied to attributes

(database application).

 Multiplicity of an attribute specifies the number of possible values for each

instantiation of an attribute. i.e., whether an attribute is mandatory ([1]) or an

optional value ([0..1] or * i.e., null value for database attributes) .

 Multiplicity also indicates whether an attribute is single valued or can be a

collection.

2.1.3 Scope

 Scope indicates if a feature applies to an object or a class.

 An underline distinguishes feature with class scope (static) from those with object

scope.

 Our convention is to list attributes and operations with class scope at the top of the

attribute and operation boxes, respectively.

Object Oriented Modeling and Design patterns

 It is acceptable to use an attribute with class scope to hole the extent of a class (the

set of objects for a class) - this is common with OO databases. Otherwise, you

should avoid attributes with class scope because they can lead to an inferior model.

 It is better to model groups explicitly and assigns attributes to them.

 In contrast to attributes, it is acceptable to define operations of class scope. The most

common use of class-scoped operations is to create new instances of a class,

sometimes for summary data as well.

2.1.4 Visibility

 Visibility refers to the ability of a method to reference a feature from another class

and has the possible values of public, protected, private, and package.

 Any method can access public features.

 Only methods of the containing class and its descendants via inheritance can access

protected features.

 Only methods of the containing class can access private features.

 Methods of classes defined in the same package as the target class can access

package features

 The UML denotes visibility with a prefix. “+” public, “-” private,

“#”protected, “~” package. Lack of a prefix reveals no information about

visibility.

 Several issues to consider when choosing visibility are

o Comprehension: understand all public features to understand the capabilities of a

class. In contrast we can ignore private, protected, package features – they are

merely an implementation convince.

o Extensibility: many classes can depend on public methods, so it can be highly

disruptive to change their signature. Since fewer classes depend on private,

protected, and package methods, there is more latitude to change them.

o Context: private, protected, and package methods may rely on preconditions or state

information created by other methods in the class. Applied out of context, a private

method may calculate incorrect results or cause the object to fail.

2.2 Associations ends

 Association End is an end of association.

 A binary association has 2 ends; a ternary association has 3 ends.

2.3 N-ary Association

 We may occasionally encounter n-ary associations (association among 3 or more

classes). But we should try to avoid n-ary associations- most of them can be

decomposed into binary associations, with possible qualifiers and attributes.

Object Oriented Modeling and Design patterns

Person

1

Car *
1

Bank

inventoryID bankID
Make bName
model

Finance

loanAmount

 The UML symbol for n-ary associations is a diamond with lines connecting to

related classes. If the association has a name, it is written in italics next to the

diamond.

 The OCL does not define notation for traversing n-ary associations.

l

Object Oriented Modeling and Design patterns

 A typical programming language cannot express n-ary associations. So, promote n-

ary associations to classes. Be aware that you change the meaning of a model, when

you promote n-ary associations to classes.

 An n-ary association enforces that there is at most one link for each combination.

Instance see prescribed text book page no. 65 and fing no. 4.6

diagram

2.4 Aggregation

 Aggregation is a strong form of association in which an aggregate object is made of

constituent parts.

 Constituents are the parts of aggregate.

 The aggregate is semantically an extended object that is treated as a unit in many

operations, although physically it is made of several lesser objects.

We define an aggregation as relating an assembly class to one constituent part

class.

 An assembly with many kinds of constituent parts corresponds to many

aggregations.

 We define each individual pairing as an aggregation so that we can specify the

multiplicity of each constituent part within the assembly. This definition emphasizes

that aggregation is a special form of binary association.

 The most significant property of aggregation is transitivity (if A is part of B and B

is part of C, then A is part of C) and antisymmetric (if A is part of B then B is not

part of A)

2.4.1 Aggregation versus Association

 Aggregation is a special form of association, not an independent concept.

 Aggregation adds semantic connotations.

 If two objects are tightly bound by a part-whole relationship, it is an aggregation. If

the two objects are usually considered as independent, even though they may often

be linked, it is an association.

 Aggregation is drawn like association, except a small (hollow) diamond indicates the

assembly end.

Object Oriented Modeling and Design patterns

 The decision to use aggregation is a matter of judgment and can be arbitrary.

2.4.2 Aggregation versus Composition

 The UML has 2 forms of part-whole relationships: a general form called

Aggregation and a more restrictive form called composition.

 Composition is a form of aggregation with two additional constraints.

 A constitute part can belong to at most one assembly.

 Once a constitute part has been assigned an assembly, it has a coincident lifetime

with the assembly. Thus composition implies ownership of the parts by the whole.

 This can be convenient for programming: Deletion of an assembly object triggers

deletion of all constituent objects via composition.

 Notation for composition is a small solid diamond next to the assembly class.

Eg: see text book examples also

Object Oriented Modeling and Design patterns

2.4.3 Propagation of Operations

 Propagation (triggering) is the automatic application of an operation to a network of

objects when the operation is applied to some starting object.

 For example, moving an aggregate moves its parts; the move operation propagates to

the parts.

 Provides concise and powerful way of specifying a continuum behavior.

 Propagation is possible for other operations including save/restore, destroy, print,

lock, display.

 Notation (not an UML notation): a small arrow indicating the direction and operation

name next to the affected association.

Eg: see page no: 68 fig: 4.11

2.5 Abstract Classes

 Abstract class is a class that has no direct instances but whose descendant classes

have direct instances.

 A concert class is a class that is insatiable; that is, it can have direct instances.

 A concrete class may have abstract class.

 Only concrete classes may be leaf classes in an inheritance tree.

Eg: see text book page no: 69, 70 fig: 4.12, 4.13,4.14

Object Oriented Modeling and Design patterns

 In UML notation an abstract class name is listed in an italic (or place the keyword

{abstract} below or after the name).

 We can use abstract classes to define the methods that can be inherited by

subclasses.

 Alternatively, an abstract class can define the signature for an operation with out

supplying a corresponding method. We call this an abstract operation.

 Abstract operation defines the signature of an operation for which each concrete

subclass must provid4 its own implementation.

 A concrete class may not contain abstract operations, because objects of the concrete

class would have undefined operations.

2.6 Multiple Inheritance

 Multiple inheritance permits a class to have more than one superclass and to inherit

features from all parents.

 We can mix information from 2 or more sources.

 This is a more complicated from of generalization than single inheritance, which

restricts the class hierarchy to a tree.

 The advantage of multiple inheritance is greater power in specifying classes and an

increased opportunity for reuse.

 The disadvantage is a loss of conceptual and implementation simplicity.

 The term multiple inheritance is used somewhat imprecisely to mean either the

conceptual relationship between classes or the language mechanism that implements

that relationship.

2.6.1 Kinds of Multiple Inheritance

 The most common form of multiple inheritance is from sets of disjoint classes. Each

subclass inherits from one class in each set.

 The appropriate combinations depend on the needs of an application.

 Each generalization should cover a single aspect.

 We should use multiple generalizations if a class can be refined on several distinct

and independent aspects.

 A subclass inherits a feature from the same ancestor class found along more than one

path only once; it is the same feature.

 Conflicts among parallel definitions create ambiguities that implementations must

resolve. In practice, avoid such conflicts in models or explicitly resolve them, even if

a particular language provides a priority rule for resolving conflicts.

 The UML uses a constraint to indicate an overlapping generalization set; the notation

is a dotted line cutting across the affected generalization with keywords in braces.

Eg: see text book page no: 71,72 fig: 4.15,4.16

2.6.2 Multiple Classification

 An instance of a class is inherently an instance of all ancestors of the class.

 For example, an instructor could be both faculty and student. But what about a

Harvard Professor taking classes at MIT? There is no class to describe the

Object Oriented Modeling and Design patterns

combination. This is an example of multiple classification, in which one instance

happens to participate in two overlapping classes.

Eg: see text book page no: 73 fig: 4.17

2.6.3 Workarounds

 Dealing with lack of multiple inheritance is really an implementation issue, but early

restructuring of a model is often the easiest way to work around its absence.

 Here we list 2 approaches for restructuring techniques (it uses delegation)

 Delegation is an implementation mechanism by which an object forwards an

operation to another object for execution.

1. Delegation using composition of parts: Here we can recast a superclass with

multiple independent generalization as a composition in which each constituent part

replaces a generalization. This is similar to multiple classification. This approach

replaces a single object having a unique ID by a group of related objects that

compose an extended object. Inheritance of operations across the composition is not

automatic. The composite must catch operations and delegate them to the

appropriate part.

In this approach, we need not create the various combinations as explicit

classes. All combinations of subclasses from the different generalization are

possible.

2. Inherit the most important class and delegate the rest:

Fig 4.19 preserves identity and inheritance across the most important generalization.

We degrade the remaining generalization to composition and delegate their

operations as in previous alternative.

3. Nested generalization: this approach multiplies out all possible combinations. This

preserves inheritance but duplicates declarations and code and violets the spirit of

OO programming.

4. Superclasses of equal importance: if a subclass has several superclasses, all of

equal importance, it may be best to use delegation and preserve symmetry in the

model.

5. Dominant superclass: if one superclass clearly dominates and the others are less

important, preserve inheritance through this path.

6. Few subclasses: if the number of combinations is small, consider nested

generalization. If the number of combinations is large, avoid it.

7. Sequencing generalization sets: if we use generalization, factor on the most

important criterion first, the next most important second, and so forth.

8. Large quantities of code: try to avoid nested generalization if we must duplicate

large quantities of code.

9. Identity: consider the importance of maintaining strict identity. Only nested

generalization preserves this.

Object Oriented Modeling and Design patterns

2.7 Metadata

 Metadata is data that describes other data. For example, a class definition is a

metadata.

 Models are inherently metadata, since they describe the things being modeled (rather

than being the things).

 Many real-world applications have metadata, such as parts catalogs, blueprints, and

dictionaries. Computer-languages implementations also use metadata heavily.

 We can also consider classes as objects, but classes are meta-objects and not real-

world objects. Class descriptor object have features, and they in turn have their own

classes, which are called metaclasses.

Eg: see text book page no: 75 fig: 4.21

2.8 Reification

 Reification is the promotion of something that is not an object into an object.

 Reification is a helpful technique for Meta applications because it lets you shift the

level of abstraction.

 On occasion it is useful to promote attributes, methods, constraints, and control

information into objects so you can describe and manipulate them as data.

 As an example of reification, consider a database manager. A developer could write

code for each application so that it can read and write from files. Instead, for many

applications, it is better idea to reify the notion of data services and use a database

manager. A database manager has abstract functionality that provides a general-

purpose solution to accessing data reliably and quickly for multiple users.

Eg: see text book page no: 75 fig: 4.22

2.9 Constraints

 Constraint is a condition involving model elements, such as objects, classes,

attributes, links, associations, and generalization sets.

 A Constraint restricts the values that elements can assume by using OCL.

2.9.1 Constraints on objects

Eg: see text book page no: 77 fig: 4.23

2.9.2 Constraints on generalization sets

 Class models capture many Constraints through their very structure. For example,

the semantics of generalization imply certain structural constraints.

 With single inheritance the subclasses are mutually exclusive. Furthermore, each

instance of an abstract superclass corresponds to exactly one subclass instance. Each

instance of a concrete superclass corresponds to at most one subclass instance.

 The UML defines the following keyword s for generalization.

 Disjoint: The subclasses are mutually exclusive. Each object belongs

to exactly one of the subclasses.

 Overlapping: The subclasses can share some objects. An object may

belong to more than one subclass.

Object Oriented Modeling and Design patterns

 Complete: The generalization lists all the possible subclasses.

 Incomplete: The generalization may be missing some subclasses.

2.9.3 Constraints on Links

 Multiplicity is a constraint on the cardinality of a set. Multiplicity for an association

restricts the number of objects related to a given object.

 Multiplicity for an attribute specifies the number of values that are possible for each

instantiation of an attribute.

 Qualification also constraints an association. A qualifier attribute does not merely

describe the links of an association but is also significant in resolving the “many”

objects at an association end.

 An association class implies a constraint. An association class is a class in every

right; for example, it can have attribute and operations, participate in associations,

and participate in generalization. But an association class has a constraint that an

ordinary class does not; it derives identity from instances of the related classes.

 An ordinary association presumes no particular order on the object of a “many” end.

The constraint {ordered} indicates that the elements of a “many” association end

have an explicit order that must be preserved.

Eg: see text book page no: 78 fig: 4.24

2.9.4 Use of constraints

 It is good to express constraints in a declarative manner. Declaration lets you express

a constraint’s intent, without supposing an implementation.

 Typically, we need to convert constraints to procedural form before we can

implement them in a programming language, but this conversion is usually

straightforward.

 A “good” class model captures many constraints through its structure. It often

requires several iterations to get the structure of a model right from the prospective

of constraints. Enforce only the important constraints.

 The UML has two alternative notations for constraints; either delimit a constraint

with braces or place it in a “dog-earned” comment box. We can use dashed lines to

connect constrained elements. A dashed arrow can connect a constrained element to

the element on which it depends.

2.10. Derived Data

 A derived element is a function of one or more elements, which in turn may be

derived. A derived element is redundant, because the other elements completely

determine it. Ultimately, the derivation tree terminates with base elements. Classes,

associations, and attributes may be derived. The notation for a derived element is a

slash in front of the element name along with constraint that determines the

derivation.

Object Oriented Modeling and Design patterns

 A class model should generally distinguish independent base attributes from

dependent derived attributes.

Eg: see text book page no: 79 fig: 4.25

2.11 Packages

 A package is a group of elements (classes, association, generalization, and lesser

packages) with a common theme.

 A package partitions a model, making it easier to understand and manage.

 A package partitions a model making it easier to understand and manage. Large

applications my require several tiers of packages.

 Packages form a tree with increasing abstraction toward the root, which is the

application, the top-level package.

 Notation for pakage is a box with a tab.

 Tips for devising packages

Carefully delineate each packages’s scope

Define each class in a single package

Make packages cohesive.

