
1

Bapuji Educational Association(Regd.)

Bapuji Institute of Engineering and Technology,

Davangere-577 004

Department of Master of Computer Applications

Semester : I

Unix Programming Lab

Manual
[20MCA17]

 By : Dr.Shankaragowda B.B. MCA., M.Phil., Ph.D., MISTE

 Assistant Professor,

 Dept. of MCA,

 Bapuji Institute of Engineering & Technology,

 Davangere-577 004.

2

CONTENTS

 .A. Explore the Unix environment

 B. Explore vi editor with vim tutor.

 C. Shell Programming
Sl.

No.
Name of the Shell Script

Page

No.

1

a)Write a shell that takes a valid directory name as an

argument and recursively descend all the subdirectories,

finds the maximum length of any file in that hierarchy and

writes this maximum value to the standard output. 9

 b) Write a shell script that accepts a path name creates

all the components in that path name as directories. For

example, if the script is named mpc, then command mpc

a/b/c/d should create directories a, a/b, a/b/c, a/b/c/d.

2 a)Write a shell script that accepts two file names as

arguments, checks if the permissions for these files are

identical and if the permission are identical, output

common permission and otherwise output each file name

followed by its permissions. 10

 b)Write a shell script which accepts valid log in names as

arguments and prints their corresponding home directories,

if no arguments are specified, print a suitable error

message.

3 a)Write shell script to implement terminal locking

(similar to the lock command). It should prompt the user

for a password. After accepting the password entered by

the user, it must prompt again for the the matching

password as confirmation and if match occurs, it must lock

lock the keyword until a matching password is entered

again by the user, Note that the script must be written to

disregard BREAK, control-D. No time limit need be

implemented for the lock duration.

11

 b) Create a script file called file-properties that reads

a file name entered and outputs it properties.

4 a)Write a shell script that accept one or more filenames

as argument and convert all of them to uppercase,

provided they exist in current directory.

13

 b)Write a shell script that displays all the links to a

file specified as the first argument to the script. The

second argument, which is optional, can be used to specify

in which the search is to begin. If this second

argument is not present, the search is to begin in

current working directory. In either case, the starting

directory as well as all its subdirectories at all levels

must be searched. The script need not include any error

checking.

5 a. Write a shell script that accepts as filename as

argument and display its creation time if file exist

and if it does not send output error message.
14

 b. Write a shell script to display the calendar for

current month with current date replaced by * or **

depending on whether the date has one digit or two digits.

3

6 a)Write a shell script to find a file/s that matches a

pattern given as command line argument in the home

directory, display the contents of the file and copy the

file into the directory ~/mydir 15

 b) Write a shell script to list all the files in a

directory whose filename is at least 10 characters. (use

expr command to check the length)

7 a)Write a shell script that gets executed displays the

message either “Good Morning” or “Good Afternoon” or “Good

Evening” depending upon time at which the user logs in.

16 b)Write a shell script that accept a list of filenames as

its argument, count and report occurrence of each word

that is present in the first argument file on other

argument files.

8

a)Write a shell script that determine the period for which

a specified user is working on system and display

appropriate message.

17 b)Write a shell script that reports the logging in of a

specified user within one minute after he/she log in. The

script automatically terminate if specified user does not

log in during a specified period of time.

9

a)Write a shell script that accept the file name, starting

and ending line number as an argument and display all the

lines between the given line number.

18
 b) Write a shell script that folds long lines into 40

columns. Thus any line that exceeds 40 characters must be

broken after 40th, a “\” is to be appended as the

indication of folding and the processing is to be

continued with the residue. The input is to be

supplied through a text file created by the user.

10

a) Write an awk script that accepts date argument in the

form of dd-mm-yy and displays it in the form if month,

day and year. The script should check the validity of the

argument and in the case of error, display a suitable

message.
20

 b) Write an awk script to delete duplicated line from a

text file. The order of the original lines must remain

unchanged.

11

a) Write an awk script to find out total number of books

sold in each discipline as well as total book sold using

associate array down table as given below.

 Electrical 34

 Mechanical 67

 Electrical 80

 Computer Science 43

 Mechanical 65

 Civil 98

 Computer Science 64

21

 b) Write an awk script to compute gross salary of an

employee

 accordingly to rule given below.

If basic salary is < 10000 then HRA=15% of basic & DA=45%

of basic

If basic salary is >=10000 then HRA=20% of basic & DA=50%

of basic.

D. Model Viva Voce Questions

4

A. Explore the Unix environment

What is Unix?

Unix is an operating system. All computers have operating systems. An

operating system is a software that acts as an interface between the user

and the computer hardware. An operating system acts as a resources

manager. Here resources mean hardware resources like the processor, the

main memory, the hard disk, I/O devices and other peripherals. In

addition to being a multi-user operating system, Unix gives its users, the

feeling of working on an independent computer system.

Linux is an operating system that evolved from a kernel created by Linus

Torvalds when he was a student at the University of Helsinki. Generally,

it is obvious to most people what Linux is. However, both for political

and practical reasons, it needs to be explained further. To say that Linux

is an operating system means that it's meant to be used as an alternative

to other operating systems, Windows, Mac OS, MS-DOS, Solaris and

others. Linux is not a program like a word processor and is not a set of

programs like an office suite. Linux is an interface between

computer/server hardware, and the programs which run on it.

Salient Features of Unix

Unix is a multi-tasking operating system – has the ability to support

concurrent execution of two or more active processes. Here it may be

noted that an instance of a program in execution is known as a process.

Unix is a multi-user operating system- has the ability to support more

than one user to login into the system simultaneously and execute

programs. For this, the Unix presents a virtual computer to every user by

creating simulated processors, multiple address spaces and the like.

Unix operating system is highly portable. Compared to other OS,it is

very easy to port Unix on to different hardware platforms with minimal

or no modifications at all.

5

Unix Components:

1. The Kernel

2. The shell

3. The file system

The Kernel: The kernel is the heart of any Unix operating system. This

kernel is relatively a small piece of code that is embedded on the

hardware. Actually it is a collection of programs that are mostly written

in c. Every Unix system has a kernel (just one) that gets automatically

loaded on to the memory as soon as the system is booted. AS the kernel

sits on the hardware it can directly communicate with the hardware.

The Shell: Every Unix system has, at least, one shell. A shell is a

program that sits on the kernel and acts as an agent or interface between

the users and the kernel and hence the hardware. It is similar to the

command.com in the MS-DOS environment.

Types of Shells:

The Bourne Shell(sh)

The CShell(csh)

The kornshell(ksh)

The Bourne-Again Shell(bash)

Basic Unix Commands

 pwd 'print working directory' displays the name of the current directory

 cd 'change directory' command will change the current directory to the

 directory specified as the argument to the command, as in
 'cd /home/WWW-pages/username'. ('cd' without specified parameter

 will return to your home directory.)

 ls 'list files' command displays the files in a directory.

 ls -l 'long list option' for listing files displays permissions, links, owner,
 group, file size, modification date, file name.

 rm 'remove' command deletes ordinary files in a directory.

 mv 'move' command moves a file from one location to another. It is also used
 to rename files, as in 'mv thisfile.txt thatfile.txt'

 cp 'copy' command creates a copy of a file.

 chmod 'change mode' command is used to control access rights to a file or files.

 mkdir 'make directory' command creates a directory or subdirectory within the
 current directory.

 rmdir 'remove directory' command removes a directory or subdirectory. The specified

6

 directory must be empty before it can be removed.

 find 'find' command is used to locate files.
 file 'file' command is used to determine the type of information in the file

 listed as the argument to the command, i.e. text or binary.

 cat 'cat' command displays the contents of files. It is also used to concatenate

 files as in "cat file1.txt file2.txt file3.txt > allfiles.txt".
 wc 'wc' command displays a count of characters, words, and lines in a text file.

 sort 'sort' command is used to sort and/or merge text files.

 grep 'grep' command searches for text strings in files.

Opening and Exiting Commands

 vi Invokes vi with blank editing screen (new file) in command mode.
 vi filename Invokes vi on existing file.

 :w Writes (saves) existing file (command mode only; <ESC> from insert

mode).

 :w filename Writes (saves) to new file (command mode only; <ESC> from insert

mode).

 :x Writes (saves) file and exits vi (command mode only; <ESC> from

insert mode).

 :q Quits vi without saving (command mode only; <ESC> from insert mode).

 :q! Quits vi without saving any changes to file (command mode only;

 <ESC> from insert mode).

Movement Commands

 h Move cursor left one character.

 j Move cursor down one line.

 k Move cursor up one line.

 l Move cursor right one character.

 w Move cursor forward one word.

 b Move cursor backward one word.

 e Move cursor to end of word.

 ^F Move cursor forward one screenful.(Hold CTRL key and

press f)

 ^B Move cursor back one screenful. (Hold CTRL key and press

b)

 ^D Move cursor down half screenful. (Hold CTRL key and

press d)

 ^U Move cursor up half screenful. (Hold CTRL key and press

u)

Editing Commands

 i Insert mode; inserts text before current cursor

position.

 I Insert mode; inserts text at the beginning of the line.

 a Insert mode; append text following cursor position.

 A Insert mode; append text at the end of the line.

 o Open a new line below the current line and insert text.

 O Open a new line above the current line and insert text.

 r Replace character under cursor.

 R Overtype mode; <ESC> terminates overtype.

 s Substitute following text for character at cursor

position; <ESC>

 terminates

 text entry mode.

 S Substitute text on entire line.

 <ESC> Return to visual command mode from insert mode.

 x Delete character at cursor position.

7

 X Delete character before cursor.

 dw Delete word at cursor position.

 dd Delete current line.

 d$ Delete from cursor to end of line.

 d^ Delete from cursor to beginning of line.

 cx Change text object at cursor positon. x is a cursor

movement key,
 commonly c (line), w (word), b (back one word), $ (to end of line), ^
(to

 beginning of line).

 <ESC> terminates text entry mode.

 ym Yank (copy) text block identified by movement command m. (See above)

 Y Yank (copy) current line.

 p Put yanked text after or below cursor.

 P Put yanked text before or above cursor.

 . Repeat last edit.

 u Undo last edit.

 U Restore current line.

8

B. Explore vi editor with vim tutor.

 Perform the following operations using vi editor, but not limited to:

1. insert character, delete character, replace character

insert character: i

i : insert before cursor

I : insert at beginning of line

Delete character : x

 x deletes the character under the cursor.

 X deletes the character to the left of your cursor.

 dw deletes from the character selected to the end

 of the word.

 dd deletes all the current line.

 D deletes from the current character to the end of the line.

Replace character : r

change word : cw

2. Save the file and continue working

:w

3. save the file a exit the editor

 :wq
4. quit the editor

:q
5. quit without saving the file

:q!
6. rename a file

mv

7. insert lines, delete lines,

 i

 dd

8. set line numbers

 Set nu

9. search for a pattern

These two commands differ only in the direction where the search takes place:

 The / command searches forwards (downwards) in the file.

 The ? command searches backwards (upwards) in the file.

. matches a single character

$ End of the file

10. move forward and backward

 w: Forward one word

 b:
Back one word

9

C. Shell Programming:
 Code: 13MCA17

1. a)Write a shell that takes a valid directory name as an argument

and recursively descend all the subdirectories, finds the maximum

length of any file in that hierarchy and writes this maximum

value to the standard output.

for i in $*

 do

if [-d $i]

then

 echo "large filename size is"

echo `ls -Rl $1 | grep "^-" | tr -s ' ' | cut -d' ' -f 5,8 | sort -n

| tail -1`

else

echo "not directory"

fi

done

--

Description: Sort Sorts the lines of the specified files, typically

in alphabetical order. Using the –m option it can merge sorted input

files. Its syntax is: sort [<options>] [<filed specifier>]

[<filename(s)>]

Cd (change [current working] directory)

………………………………………………………………………………

Input: $sh 2a.sh enter directory name

Output:

 Max file length is 835

……………………………………………………………………………

b) Write a shell script that accepts a path name creates all the

components in that path name as directories. For example, if the

script is named mpc, then command mpc a/b/c/d should create

directories a, a/b, a/b/c, a/b/c/d.

echo "enter the pathname"

read p

i=1

j=1

len=`echo $p|wc -c`

while [$i -le $len]

do

x=`echo $p | cut -d / -f $j`

namelength=`echo $x|wc -c`

mkdir $x

cd $x

pwd

j=`expr $j + 1`

i=`expr $i + $namelength`

echo $g

done

--

Description: mkdir(make directory)

$mkdir directory

Creates a subdirectory called directory in the current working

directory. You can only create subdirectories in a directory if you

have write permission on that directory.

Pwd: Displays current working directory.

……………………………………………………………………………..

Input: Enter the pathname

 a/b/c/d

Output: a, a/b, a/b/c, a/b/c/d

10

2. a) Write a shell script that accepts two file names as arguments,

checks if the permissions for these files are identical and

if the permission are identical, output common permission and

otherwise output each file name followed by its permissions.

-Check the permissions

if [$# -eq 0] #Line1

 then

 echo "arguments not entered sorry try again "

 else

 ls -l $1 > f1 #Line5

 x=`cut -c2-10 f1` #Line6

 echo $x

 ls -l $2 > f2

 y=`cut -c2-10 f2`

 echo $y

 echo " "

 if [$x = $y]

 then

 echo "permission of both files are same"

 echo $x

 else

 echo "permission are different"

 echo $x

 echo $y

 fi

 fi

………………………………………………………………….

Description: In Line1 $# means total number of arguments supplied to

the shell script. In line5 File attributes and permissions can be

known by using the listing command ls with –l option. In line6 the

cut command - splitting files vertically. Using this command

required field(s) or column(s) can be extracted from a file. The –c

option is used to extract required fields based on character

positions or column(s).

If-then-else

The syntax of the if-then-else construct is

If[expr] then

 Simple-command

fi

or

if[expr] then

 commandlist-1

else

 commandlist-2

if

The expression expr will be evaluated and according to its value,

the commandlist-1 or the commandlist-2 will be executed.

Input: $sh 1b.sh filename1 filename2

Output:

 Permissions of both files are same

 rwxr-xr-x

 rwxr-xr-x

 You have to change the file permission: $chmod 777 filename1

 Permissions are different

 rwxrwxrwx $+1

 rwxr_xr-x $+2

11

b) Write a shell script which accepts valid log in names as

arguments and prints their corresponding home directories, if no

arguments are specified, print a suitable error message.

clear

y=$#

i=1

if [$y -eq 0]

then

 echo "arguments are not entered"

else

 while [$i -le $y]

do

 loginname=$1

 grep $loginname /etc/passwd > s

if [$? -eq 0]

then

 echo "loginname:$loginname"

 echo "home directory"

cut -d ":" -f 6 s

fi

shift

i=`expr $i + 1`

done

fi

--

Description:

Grep: This command is used to search, select and print specified

records or lines from an input file.

Grep [options] pattern [filename1][filename2]…

…………………………………………………………….

Input: login name: MCA

Output: home directory

 /home/MCA

…………………………………………………………

3 a) Create a script file called file-properties that reads a file

name entered and outputs it properties.

echo "Enter a file name"

 read file

 if [-f $file]

then

 set -- `ls -l $file`

echo "file permission: $1"

echo "Number of links:$2"

echo "User name:$3"

echo "Group name: $4"

echo "Filesize : $5 bytes"

echo "Date of modification:$6"

echo "time of modification:$7"

echo "Name of file:$8"

else

 echo "file does not exist"

fi

or

12

#Check the permissions

echo "enter the file name1"

read f1

ls -l $f1

………..

Input: Enter the file name

 biet

Output: -rwxrwxrwx 1 root root | mar | 11: 50 biet

……

b) Write shell script to implement terminal locking (similar to the

lock command). It should prompt the user for a password. After

accepting the password entered by the user, it must prompt again for

the the matching password as confirmation and if match occurs, it

must lock lock the keyword until a matching password is entered

again by the user, Note that the script must be written to disregard

BREAK, contro-D. No time limit need be implemented for the lock

duration.

clear

echo "Enter the passwd for terminal locking"

stty -echo

read pass1

stty echo

echo "Enter passwd for confirmation"

stty -echo

read pass2

stty echo

val=1

while [$val -eq 1]

do

if [$pass2 = $pass1]

then

 echo "password match"

val=0

else

 echo "invalid password"

 echo "Enter password for confirmation"

 stty -echo

 read pass2

 stty echo

fi

 done

if [$pass1 = $pass2]

 then

 echo "Terminal is locked"

 echo "Enter password to unlock terminal"

 stty -echo

 read pass3

 val=1

 while [$val -eq 1]

 do

 while [-z "$pass3"]

 do

 sleep 1

 read pass3

done

13

 if [$pass3 = $pass2]

 then

 val=0

else

clear

echo "invalid password"

echo "enter passwd for unlocking"

stty -echo

read pass3

fi

done

stty echo

fi

stty echo

echo "terminal unlocked"

………..

Input: Enter the password for terminal locking

 123

 Enter the password for confirmation

 123

 Enter password to unlock terminal

 123

 output: Terminal is unlocked

……..

4a. Write a shell script that accept one or more filenames as argument and convert all of

 them to uppercase, provided they exist in current directory.

y=$#

if [$y -le 0]

then

 echo "argument is not entered"

else

 for file in $*

 do

echo "$file"

 n=`echo -n "$file" | tr "[a-z]" "[A-Z]"`

mv "$file" "$n"

echo "$n"

done

fi

……..

Input: $sh 4b.sh Enter directory name

Output: All files change to uppercase

………..

14

 b. Write a shell script that displays all the links to a file specified as the first argument

 to the script. The second argument, which is optional, can be used to specify in

 which the search is to begin. If this second argument is not present, the search is to

 begin in current working directory. In either case, the starting directory as well as all

 its subdirectories at all levels must be searched. The script need not include any

 error checking.

file=$1

if [$# -eq 1]

then

 dirx="."

else

 dirx="$2"

 fi

set -- `ls -l $file`

lcnt=$2

if [$lcnt -eq 1]

then

 echo "No other links"

 exit 0

 else

 set -- `ls -i $file`

 inode=$1

 find "$dirx" -xdev -inum $inode -print

fi

……………………………………………………………………………………………………….

Input: $sh sa.sh T1 Note: You have create a link $ln T1 T2

Output: ./y

 ./g

…….

5a. Write a shell script that accepts as filename as argument and display its creation time

 if file exist and if it does not send output error message.

if [$# -eq 0]

then

 echo "display does not exit"

 else

 ls -l $1 > t1

x=`cut -c 42- t1`

echo $x

fi

………………………………………………………………………………….

 input: $sh 5b.sh t1

 Ouput: 15:29 t1

………………………………………………………………………………..

15

 b. Write a shell script to display the calendar for current month with current date

 replaced by * or ** depending on whether the date has one digit or two digits.

 # program to display the current month and date

 set `date`

if [$3 -le 9]

then

 n=`cal | tail -n +3 | grep -n "$3" | cut -d ":" -f1 | head -n1`

n=`expr $n + 2`

 cal|sed "$n s|$3|*|"

else

 cal|sed "s|$3|**|"

fi

……..

 Input: $sh 6a.sh

 Output:

 Mon Mar 17 09:39:20 IST 2008

 March 2008

 Su Mo Tu We Th Fr Sa

 1

 2 3 4 5 6 7 8

 9 10 11 12 13 14 15

 16 ** 18 19 20 21 22

 23 24 25 26 27 28 29

 30 31

………

6a. Write a shell script to find a file/s that matches a pattern given as command line

 argument in the home directory, display the contents of the file and copy the file into

 the directory ~/mydir

 if [$# -eq 0]

 then

 echo “No arguments”

 exit

 fi

 for i in $*

 do

 echo grep –riew $* /home/mca

 ls $*

 cat $*

 cp –f $* /home/mca/mydir

 done

………………………………………………………………………..

Input: $ sh 6a.sh *.sh

Output: Copy the *.sh file to /home/mca/mydir

 Display content *.sh files.

16

 b. Write a shell script to list all the files in a directory whose filename is at least 10

 characters. (use expr command to check the length)

echo "enter the string"

read str

le=`expr length $str`

 if [$le -le 10]

 then

echo "String is less than or equal 10 characters"

else

 echo $str

 fi

…….

Input: Enter the string

 biet

Output: String is less than 10 characters

……..

Clear

If [$# -eq 0]

then

echo “enter directory name as argument”

else

c=’ls –l $* | cut –d “ “ –f 9’

echo “filename are $c”

for I in $c

do

len=`expr “$i” : ‘.*’`

if [$len –ge 10]

then

echo “$i having $len”

fi

done

fi

7a. Write a shell script that gets executed displays the message either “Good Morning” or

 “Good Afternoon” or “Good Evening” depending upon time at which the user logs in.

hournow=`date | cut -c 12-13`

echo $hournow

user=`echo $LOGNAME | cut -d "/" -f 2`

echo $LOGNAME

case $hournow in

[0-1][0-1]|0[2-9])echo "good morning Mr/Ms: $LOGNAME";;

 1[2-9])echo "good after noon Mr/Ms: $LOGNAME";;

 1[6-9])echo "good Evening Mr/Ms: $LOGNAME";;

 *)echo "good Night Mr/Ms: $LOGNAME";;

esac

 ………………………………………………………………

Input: $sh 9a.sh

Output: good after noon

……………………………………………………………..

17

 b. Write a shell script that accept a list of filenames as its argument, count and report

 occurrence of each word that is present in the first argument file on other argument

 files.

if [$# -lt 2]

then

 echo "usage:wdcnt wordfile filename1 filename2......."

exit

 fi

for word in `cat $1`

do

for file in $*

do

if ["$file" != "$1"]

then

 echo "the word frequency of --$word--in file $file is:

`grep -iow "$word" $file | wc -w`"

fi

done

done

……

Input: $cat a

 Unix is an OS by the researchers for the researchers

 Unix is an OS of the present computing industry

 $cat b

 Os is an ss that acts as an interface between the

 human and the computer

 $sh 9b.sh Wordfile a b (Wordfile contains Unix)

 Ouput: The word frequency of Unix in the a is 2

 The word frequency of Unix in b is 0

 The word frequency of OS in a is 2

 The word frequency of Os in b is 1

………..

8a. Write a shell script that determine the period for which a specified user is working on

 system and display appropriate message.

echo "enter the login name of a user"

read name

userinfo=`who | grep -w "$name" | grep "pts"`

echo $userinfo

if [$? -ne 0]

then

 echo "$name is not logged-in yet"

exit

fi

 hrs=`echo "$userinfo" | cut -c 34-35`

 echo "login time " $hrs

 min=`echo "$userinfo" | cut -c 37-38`

 echo "login Min" $min

 hrnow=`date | cut -c 12-13`

 echo "current hrs" $hrnow

 minnow=`date | cut -c 15-16`

 echo "cuurent Min" $minnow

if [$minnow -lt $min]

then

 minnow=`expr $minnow + 60`

18

 hrnow=`expr $hrnow + 1`

fi

 hour=`expr $hrnow - $hrs`

 minutes=`expr $minnow - $min`

 echo "Mr/Ms:$name is working since $hour hrs-$minutes minutes"

………..

Input: Enter the login name

 MCA

Output: MCA is working since 1 hr – 13 minutes

……

 b Write a shell script that reports the logging in of a specified user within one minute

 after he/she log in. The script automatically terminate if specified user does not log

 in during a specified period of time.

echo -n "enter the login name of the user".

read lname

period=0

echo -n "enter the unit of time(min):"

read min

until who | grep -w "$lname"> /dev/null

do

sleep 60

period=`expr $period + 1`

if [$period -gt $min]

then

 echo "$lname has not logged in since $min minutes."

exit

fi

done

echo "$lname has now logged in."

………

Input: MCA

Output: MCA has now logged in

Input: test1

Output: tetst1 has not logged in 1 minutes

……….

9a. Write a shell script that accept the file name, starting and ending line number as an

 argument and display all the lines between the given line number.

if [$# -ne 3]

then

 echo "invalid number of arguments"

exit

 fi

 c=`cat $1 | wc -l`

 if [$2 -le 0 -o $3 -le 0 -o $2 -gt $3 -o $3 -gt $c]

 then

 echo "invalid input"

exit

 fi

 sed -n "$2,$3 p" $1

……..

Input: $cat proverb.txt

 A friend in need is a friend indeed

 gold

19

 biet

 Industry

 mca

ouput: $sh 11b.sh proverb.txt 2 4

 gold

 biet

 industry

…………………………………………………………………………………………

 b. Write a shell script that folds long lines into 40 columns. Thus any line that exceeds

 40 characters must be broken after 40th, a “\” is to be appended as the indication of

 folding and the processing is to be continued with the residue. The input is to be

 supplied through a text file created by the user.

echo "Enter the filename:\c"

read fn

for ln in `cat $fn`

do

 lgth=`echo $ln|wc -c`

 lgth=`expr $lgth - 1`

 s=1;e=40

 if [$lgth -gt 40]

then

 while [$lgth -gt 40]

 do

 echo "`echo $ln|cut -c $s-$e`\\"

 s=`expr $e + 1`

 e=`expr $e + 40`

 lgth=`expr $lgth - 40`

 done

 echo $ln|cut -c $s-

else

 echo $ln

fi

 done

echo "File folded"

……….

Input: $sh 12a.sh t.txt

Output:bb/

 bb/

 bb/

 bbbbbbbbbbbbbbbbbb

……

20

10a Write an awk script that accepts date argument in the form of dd-mm-yy and

 displays it in the form if month, day and year. The script should check the validity

 of the argument and in the case of error, display a suitable message.

{ split ($0, arr, "-")

 if ((arr[1] < 1) || (arr[1] >31) || (arr[2] < 1) || (arr[2] > 12)

{

 print "invalid date"

 exit 0

 }

 else {

 print arr[2]

 if (arr[2] == 1)

 print "Jan"

 if (arr[2] == 2)

 print "Feb"

 if (arr[2] == 3)

 print "March"

 if (arr[2] == 4)

 print "April"

 if (arr[2] == 5)

 print "May"

 if (arr[2] == 6)

 print "jun"

 if (arr[2] == 7)

 print "jul"

 if (arr[2] == 8)

 print "Aug"

 if (arr[2] == 9)

 print "sep"

 if (arr[2] == 10)

 print "oct"

 if (arr[2] == 11)

 print "Nov"

 if (arr[2] == 12)

 print "Dec"

print arr[3]

}

}

…………………………………………………………….

Input: $awk –f 12b.awk

 03-15-2008

Output:

 March

 15

 2008

……………………………………………………………

21

 b. Write an awk script to delete duplicated line from a text file. The order of the

 original lines must remain unchanged.

BEGIN {

 print "Removing Duplicated lines"

}

 {

 line [++no] = $0

}

 END {

 for (i=1; i<=no; i++)

 {

 flag=1

 for (j=1; j<i; j++)

 if (line[i] == line[j])

 flag=0

 if (flag==1)

 print line[i] >> "out13a.txt"

 }

}

…………………………………………………………………..

Input: $cat t1.txt

 abcd

 abcd

 xyz

 (press ctrl d)

 Output: $cat 13a.txt

 xyz

………………………………………………………………….

11a. Write an awk script to find out total number of books sold in each discipline as well

 as total book sold using associate array down table as given below.

 Electrical 34

 Mechanical 67

 Electrical 80

 Computer Science 43

 Mechanical 65

 Civil 98

 Computer Science 64

BEGIN {print"Total number of books sold in each category"}

 {books [$1]+=$2}

END { for(item in books)

 { printf("\t%-17s %ls %-5d\n", item, "=", books[item])

 total+=books[item]

 }

 printf("%-17s %ls %-5d\n", "Total books sold", "=", total)

}

……………………………………………………………………………………….

input: $awk –f 13b.awk

 Electrical 34

 Mechanical 67

 Electrical 80

 Computer Science 43

 Mechanical 65

 Civil 198

 Computer Science 64

22

Ouput: Electrical 114

 Mechanical 132

 Computer Science 107

 Civil 198

 Total: 551

……………………………………………………………………………………………

b. Write an awk script to compute gross salary of an employee accordingly to rule given

 below.

 If basic salary is < 10000 then HRA=15% of basic & DA=45% of basic

 If basic salary is >=10000 then HRA=20% of basic & DA=50% of basic.

BEGIN { FS=":"

 print "\n\t\tsalary statement of employees for the month of feb"

 print "sl.no","\t","name","\t\t","designation","\t","BASIC",

 "\t","DA","\t","HRA","\t","GROSS"

 print}

 {slno++; basic_tot+=$5;

 if ($5 >= 10000)

 {da=0.45*$5; da_tot+=da;

 hra=0.15*$5;hra_tot+=hra;}

else { da=0.50*$5;da_tot+=da;

 hra=0.20*$5;hra_tot+=hra;}

 sal_tot+=$5 + da + hra

 printf "%2d\t%-15s %12-s %8d %8.2f %8.2f

%8.2f\n",slno,$2,$3,$5,da,hra,$5+da+hra}

 END {print "\n\ttotal basic paid is : rs " basic_tot

 print "\ttotal da paid is : rs " da_tot

 print "\ttotal hra paid is : rs " hra_tot

 print "total salary paid is : rs " sal_tot}

……….

 Input: $cat data.txt

 mc901:guru:md:3/2/2008:52000

 mc902:girish:ana:4/2/2008:30000

 $awk –f 14.awk data.txt

 Output:

salary statement of employees for the month of Februry
sl.No Name Designation BASIC DA HRA GROSS

 1 guru md 52000 23400.00 7800.00 83200.00

 2 girish ana 30000 13500.00 4500.00 48000.00

 Total basic paid is: Rs

 Total da paid is:Rs.

 Total hra paid is:Rs.

 Total salary paid is:Rs.

……..

Note: In the examination each student picks one question from a lot of all the 11

questions. Question A & B Not to be included for examination

23

D. Model Viva Voce questions

Unix

Unix is an Operating System. All Computers have operating systems. An operating system is

a software that acts as an interface between the user and the computer hardware. An operating

system acts as a resources manager. Here resources mean hardware resources like the
processor, the main memory, the hard disk, I/O devices and other peripherals. In addition to

being a multi user operating system, Unix gives its users, the feeling of working on an

independent computer system.

Salient feature of

Unix

1. Unix is a multi-tasking operating system – has the ability to support concurrent execution
of two or more active processes. Here it may me noted that an instance of a program in
execution is known as a process.

2. Unix is a multi-user operating system – has the ability to support more than one user to
login into the system simultaneously and execute programs.

3. Unix Operating system is highly portable. Compared to other OS Unix on to different
hardware platforms with minimal or no modifications at all.

Unix Components

1. The kernel 2. The shell 3. The file system
The kernel is the heart of any Unix Operating system. This kernel is relatively a small piece

of code that is embedded on the hardware. The shell is a program that sits on the kernel and

acts as an agent or interface between the users and the kernel and hence the hardware.

Types of Shells
1.The Bourne Shell(Sh) 2. The C Shell(csh) 3. The Korn shell (ksh) 4. The Bourne-Again shell

(bash)

The Shell prompts $ (dollar) : Bourne and Korn Shells %(percent) : C shells #(hash) : Any shell as root

echo Command
The echo command is used to display messages. It is quite useful in developing interactive shell
programs.

Aliases Giving alternate names to commands

Unix files
A File is a sequence of bits, bytes or lines that is stored on a storage device like a disk.

1. Regular files 2. Directory files 3. Device files or special files
Hidden files Dot files : Ex: .profile, .exec and other files.

File system:

Dot(.) and Dot(..)

These are two special purpose file names that exist in every file system. The file name dot (.)

refers to the directory that contains it and the file name dot-dot (..) refers to the parent of its

current directory.

cat command Create files and Display the contents of a file.

ls command Listing of files : This command is used to list all the files in a current directory.

chmod command Changing file permissions

chown Command Changing the owner of a file

chgrep Command Changing the group of a file

Redirection

< > >> |

0 1 2

It is possible to change the source from where the input is taken by a program as well as

destination to where the output is sent by a program. This mechanism of changing the input

source and /or output destination is called redirection.

< input redirection > output redirection >> output redirection with appending

|(pipe) Connecting the output of one command as input to another command

The file descriptors 0 1 and 2 are implicitly prefixed to the redirection operators.
0 is input descriptor 1 is output descriptor and 2 is standard error file.

Filter

A program or a command that reads its input from the standard input, processes it in some

way, and writes its output to the standard output is called a filter. Many of the Unix

Commands like cat, grep, tee, sort, more, head, tail, cut, paste and others are some examples of

filters.

tee command This is a mechanism that sends a copy of its input to one or more files as well as to the standard output.

/dev/tty and

dev/null

/dev/tty : terminal file /dev/null: Trash files

cut command
Splitting files vertically –Using this command, required field (s) or column(s) can be extracted from a
file.

Vi Editor
vi-stands for visual editor. It is full-screen editor. The three modes of the vi editor are the

Command mode , the input mode and the ex mode.

.exrc file

This is an automatic initialization file, which will be present in the home directory. This is an

optional file. This file contains a series of set commands with proper options as well as some

other ex mode commands. $cat > .exec

 set number

24

grep Commnad

This command is used to search, select and print specified records or lines from an input file.

grep is an acronym for globally search a regular expression and print it. The syntax: grep

[options] pattern [filename1] [filename2]…options –I, -v,-l, -n, -e. egrep : extended grep

and fgrep: fixed grep.

sed command

Sed is an acronym for the stream editor. It is an extremely powerful editor by using which, one

can perform (affect) quick and easy changes to a file without entering into an editor like vi or

emacs and others. General format: $sed options ‘address_actionlist’ filelist

Process

A process is an abstract concept of using which , one can explain, understand and control the

execution of a program in an operating system. In its simplest form a process is defined as a
program in execution.

Foreground and

background

process.

Daemons

All the user processes, which are created by users with the shell, act upon the directions of the

users and are normally attached to the terminal are called interactive processes. These types of

processes are also called foreground processes.

Certain processes can be made to run independent of terminals. Such processes that run

without any attachment to a terminal are called non-interactive processes. These types of

processes are also called background processes.

All processes that keep running always without holding up any terminals and keep waiting for

certain instructions either from the system or users and then immediately get into action are

called daemons.

System variables

and Local variables

System variables: are set either during the boot sequence or after logging in. examples PATH ,

HOME, MAIL, SHELL and TERM Variables. Local variables are user-defined variables.

$0 $0 is a special shell variable that holds the parameter number 0 , the program name.

$# $* $@

$# : The variable $# holds a count of the total number of parameters, that is arguments.

$* : Variable holds the list of all the arguments
$@: Variable holds the list of arguments present in the command line

“$*” and “$@”
“$*” : the command treats all the command line arguments as a single argument.

“$@” : the command treats the command line arguments as individual arguments.

test command

This is a built-in shell command that evaluates the expression given to it as an argument and

returns true if the evaluation of the expression returns a zero or false If the evaluation returns

non-zero. -eq : equal to -ne: not equal to -gt : greater than –ge: greater than or equal to

-lt: less than –le : less than or equal to. -e file : true if file exists –r file: true if file exists and

is readable. –h file : True if file exists and is a link file.
Loop control
structures

While , until, for

awk

awk is a filter program that was originally developed in 1977 by Aho Weinberger and

Kernighan as a pattern-scanning language. The name awk is derived from the first letters of its

developers surname . It is a programming language with C-like control structures, functions

and variables. The general format of an awk command line is : $ awk options ‘program’

filelist

FS : Input field separator (default: blank and tab)

OFS: Output field separator (default: blank and tab)

RS : input record separator (default: new line)

NR: Number of current record NF: Number of fields in input record ARGC: Number of

command line arguments ARGV: Command line arguments array. $0: Entire current line

Superuser
A superuser is a user with unrestricted access to all files and commands, The username of the
superuser’s account is root. Many administrative tasks and their associated commands require

superuser status.

df and du

commands

The df(disk free) command is used to find the amount of disk space available on a file

system.

The du(disk usage) command is used to find out how much disk space has been used by each

sub-directory as well as each file under the current directory.

find command

find is the Unix’s file search command using which, one can search a required file in any

required directory structure or directory structures. This command is one of the least used and

most powerful commands in the Unix environments.

#find path_list selection_criterion action

ln command

Hard links

Symbolic links

ln command : file links Hard links: In Unix more than one user can use the same file with his

or her own filename. $ln trial test Symbolic links are files that hold the pathname of the

original file. Since symbolic links are also files the inode numbers of these linked files will be

different. One of the common uses of symbolic links is on the web.

25

