MODULE-I

LINEAR PROGRAMMING PROBLEM [L.P.P]

Formulation: Convertion of descriptive type problem into mathematical expression is called Formulation.

Formulation to L.P.P.

L.P.P: - The mathematical expressions are linear in nature. We use some particular step to solve (i.e programming). It contain objective function, Constraints and non-negativity restriction.

problem NO.1. A marketing manager wishes to allocate his annual advertising budget of Rs. 2000 in two media his and B. The unit cost of message in media A is Rs 100 and in B is Rs. 150. Media A is monthly. Rs 100 and in B is Rs. 150. Media A is monthly magazine and not more than one insertion is desired in one issue. At least 5 messages should appear in media B. The expected effective audience for unit-media B. The expected effective audience for unit-message for media A is 4000 and for media B is 5000. Formulate as L. P. P.

Solution! - [The problem is in descriptive type.

To convert this into em mathematical expressions,
is called Formulation.]

Read the problem carefully and identify how many variables are there in the problem.

Let x_1 be the number of messages in media A x_2 be the number of messages in media B.

The object is to maxionize effective audience
for unit message. Thus the objective function is

maximize $z = 4000 x_1 + 5000 x_2$ [objective function

Subject to $100 x_1 + 150 x_2 \le 2000$ (Budget Constraint) $x_1 \le 1$ (Issue Contraint) $x_2 > 5$ (Message Constraint) $x_2 > 5$ (Message Constraint) $x_3 > 6$ (non-negativity restriction)

2. The manager of an oil refinery has to decide upon the optimal mix of two possible blending processes of which the inputs and outputs per production run are as follows:

	Inpu	ļ-
process	crudeA	crudeB
	5	3
2	4	5

Ou	utput
Gasolinex	Gasoline y
5	S
4	4

The maximum amounts available of crude A and B are 200 and 150 units respectively. Market requirements show that atleast 100 units of gasoline x and 80 units of gasoline Y and 80 units of gasoline Y must be produced. The profits per production gasoline Y must be produced. The profits per production run of process I and process 2 are Rs. 3 and Rs. 4 run form process I and process 2 are Rs. 3 and Rs. 4 respectively. Formulate the problem as a L.P. model. Solution: Let x1 be the number of production, process I have be the number of production run of process 2

Since the profit is involved, it should be maximized. Thus the objective function is Maximize Z = 3x1 + 4x2

Subject to 5x1+4x2 \le 200 (crude A constraint) 3x,+5x2 < 150 (crude B constraint)

5x1+4x2 > (Gasoline X constraint)

8x1 + 4x2 > 80 (Gasoline Y constaint) [Hint; atteast means >

atmost means < スパなかの

L+ [non-negativity restriction]

A farmer has to plant two kinds of trees Aand B in a land of 4400 m area. Each A tree requires at least 25 m2 and Btree atleast 40 m2 of Land. The annual Water repuirement of A is 30 units and B is 15 units per tree, While atmost 3300 units of water is available. It is also estimated that the ratio of number of B trees to the number of A trees should not be less than 6, and not more than 17. The return per tree from A tree is expected to be one and half times as much as from B tree. Formulate as L.P.P.

Solution! - Let a, be the number of A trees to be planted No be the occumber of B trees to be planted

If the seturn from B tree is one unit then that from A tree is 1.5 voit. The objective function is to

Maximize Z = 1.52, + x2

Subject to Hint 22 >, 6/19 - [GAI 8 - 1922 > 0] 1922 7, 621

-6×1-19×2≤0 x1 ≤ 17 17x1-8x2>0

25x, + 40 x2 ≤ 4400 (Land constraint) 30x, +15x2 ≤ 3350 (water constant)

12 > Ga (propostion constraint)

Ny & 17 (propostion constraint)

and ni, no >0 [non-negativity constant]

4. A dairy feed company may purchase and onix one Or onose of the three types of grains containing different amounts of nutritional elements. The data are given below. The production manager specifies that any feed mix for his livestock must meet atleast minimal but nutritional requirements and seeks the least costly arrong all such mixes.

assavag		one voit weight of			Mirmand	
	Item		GrainI	Crown III	requirement-	
Nutritional ingredients	A B C	2 5	3 1 3	7 0 0	1250 250 900	
Cost Rs U	D unit weight	41	25 35	96	1232.5	

Formulate LPP model.

Solution: - Let x, be the weight of grain I in unit weight of mix No be the Weight of grain I in wit weight of the anix as be the weight of grain III in unit weight of the mix.

The objective function is to

Mirriraige Z = 4121, +35x2+96x3 Subject to, 2x,+3x2+7x2>1250 (Item A Constraint) 21+2/2 > 250 (Item B constraint) 5x1+3x2 900 (Item [Constant) 6x1+25x2+x3>1232.5 (Item D. Constació)

E x,x2,x3 >o [non-negativily Constosiots]

5. Old hears can be bought for Rs. 2 each and young ones cost Rs. 5 each. The old hears lay 3 eggs per Week and young ones 5 eggs per week. Each egg is -Sold for 30 paise. The feeding cost per week for each hen is Rs. 1. It a person has only Rs. 80 to spend on the hears, how many of each kind should be buy to give a profit more than Rs. 6 per week assurations that he cannot house more than 20 hers? Formulate this as L.P.P (do not solve).

Solution! - Let X, be the number of old hears X2 be the number of young hens

Sales income form the eggs laid by old hears per week = Number of eggs laid by each hen & muon ber of hens x

selling price of each egg

3xx1x0.3 = 0.9x1 repeed

Feeding cost of old hers per week = x, rupees Hence profit prom old hers per week = 0.9 x1-x1=-0.121 III/A benfit bears hound yound yound young bears bear meet = 2xxxx0.3 = xx

The objective function is Maxironize Z = -0.12, +0.52

Subject to 2x, +5n2 5 80 (Budget constraint)

-0.18, +0.582 >, 6 (Poolfit coonstanion)

X1+ x2 = 20 (Housing constaine)

E x, x2 >0 [non-negativily restriction]

Hint!- [In this problem, the objective function is to maximize the profit. Hence profit construent is not mandatory to write. Even if you leave, it not affect the problem

A farmer has a 100 acre farm. He can sell all the tomatoes, lettuce and radishes he can grow. The price he can obtain is Rs. 1 per kg of for tomatous, Rs. 0.75 a head for lettuce and Rs 2 per kg for rodished The average yield per acre is 2000 kg. of tomatoes, 3000 heads of lettuce and 1000 kg of radishes. Fertilizer in available at Rs 0.5 per kg. and the (and the quantity required per acre is 100 kg each for tomatoes, and lettuce and 50kg for radishes. Labour required for sowing, cultivating and harvesting per acre is 5 man-days for tornators and radishes and 6 man-days for lettuce. A total of 400 man-deeps of Labour is available at Rs 20 per man day. Formulate a Lp model for this problem.

Solution! - Let X, be the acre of Land for growing tomatoes No be the acre of Land for growing lettuce X3 be the acre of Land for growing radishes

Sales income = product per acre X sale price x acre = 2000 x 1x x1 + 3000 x 0.75 x x2 +1000×2××3

2000x, +2250x2+2000x3

Total cost of festilizer = price of festilizer perky x quantity of festilizes per acre x acre

0.5 [100(x1+x2)+50x3]

50x1+50x2+25x3

Total cost of Labour = cost per manday x man-days per acree X acre

20 (5x1+6x2+5x3)

100×1+120×2+100×3

profit = Sales in come - Total cost of fertilizer - Total cost of laboral
= 2000x1+2250x2+2000x1, - (50x1+50x2+25x3)
- (100x1+120x2+100x3)
= 1850x1+2080x2+1875x3

Subject to x1+x2+x3 \$ 100 (Land Constraint)

5x1+6x2+5x3 \$ 400 (Labour Constraint)

Ea x,, x2, x3 >,0 [mon-negativity restriction]

7. A firm manufactures two components A and B. It purchases the casting for the components and then processes the castings through machining, boring and potishing. The casting for the components A and B cost Rs. 20 and Rs. 30 per component respectively. The finished Components are sold at Rs. 50 and Rs. 60 per component respectively. The running cost of the processes and the machine capacity for only one type of component are given below:

- 1 1	process Capac	Russingcost	
process	for only component A	for component B	Kurring cost per hour
Machioning	25 Components M	40 Components M	Kg. 200
Bosing	20 Components/NS	35 corporents hg	Rs.140
	35 coorporents/149	25 correprovents/ly	Rs.175
polishing	38 6.11		

Formulate the above problem as a L.P.P.

Solution! Let 11, be The number of components A

Sales in corone = Sales price x ouronber of correponents = 50x, +60x2

Total cost = cost of casting + cost of processing

Cost of porcessing a consponent for pasticular process
$$= \frac{\text{Running cost per hour}}{\text{Components per hour}} \text{ under going particular processing}$$

Total
$$= 20 \times 1 + \frac{200}{25} \times 1 + \frac{140}{28} \times 1 + \frac{175}{35} \times 1 + 30 \times 2 + \frac{200}{140} \times 2 + \frac{175}{25} \times 2$$

can sell an unlimited amount of each product and wishes to determine the optional mix for maximum probit. Resources : Raw material x=1600 kg, y=750 kg. Equipment time = 60 hours, Labourtime = 150 hours

		*
Bill of Materials	productA	productB
Materials: x (kg) y (kg) Equipment time (hour); Labour live (hour); Cost and price information; Selling price (RB) Cost of materials RS/Kg: x : y Equipment cost Rs/hour.	2 0.5 0.06 0.10 6.0 1.0 0.5 3.0 0.40	5.0 0.5 0.04 0.15 5.0 0.5 2.0 0.60

Formulate LPP!

Solution! The objective is to determine the optional product son'x for maxionum profit.

Maximize
$$Z = \text{profit} = 6x_1 + 5x_2 - 2x_1 \times x_1$$

 $-(0.5 \times 0.5 \times 1.4 \times 0.5 \times 0.5 \times 2)$
 $-(0.06 \times x_1 \times 3 + 0.04 \times 2 \times 2)$
 $-(0.1x_1 \times 0.4 + 0.15 \times 2 \times 0.6)$

profit = Selling price - Material cost - Equipment cost - Labour

Man 7 = profit = 3.53 x1 + 4.58 x2 22, \$ 1600 (Raw material constraints) Subjected to 0.57, +0.5 1/2 5 750 (Raw material y) 0.06x, +0.04x2 \le 60 (Equipment constants) 0.1 M1 + 0.15 M2 5150 (Labour constants)

x, x2 > 0 [own-negativilg restorction_

9. A transport company with Rs 40,00,000 to spend, is Contemplating to purchase three types of vehicles. Vehicle A has 10 ton pay load and expected to average 35 km. per hour. It costs Rs. 80,000. Vehicle B has 20 ton pay load, expected to average 30 km. per hour. It costs Pay load, expected to average 30 km. per hour. It costs looooo, vehicle G is modified form of B. It is having provision for sleeping for one driver and its capacily is 18 tons and averages 28 km. per hour. A and B with one driver can run 12 hours per day, C requires two drivers and run 20 hours a day. Company has one hundred drivers available. Maintenance facilities one hundred drivers available. Maintenance facilities restrict the total vehicle to 30. Formulate This as L.P.p. to maximise ton-km per. day.

Solo, - Here the objective is to maximize ton-komper.day.

Let X, be the number of vehicle of type A

se the number of vehicle of type B

se the number of vehicle of type C.

Ton-Korlday = Ton pay load x average kon/Long x minutes of running perday x no: grewill

For type & vehicle, ton-Kom | day = 10 × 35 × 12 × 21, = 4200 ×,

For type B vehicle ton-Kom | day = 20 × 30 × 12 × ×2 = 7200 ×2

For type c vehicle ton-Kom | day = 18 × 28 × 20 × ×3 = 10080 ×3

For type c vehicle ton-Kom | day = 18 × 28 × 20 × ×3 = 10080 ×3

Maximize Z = 4200 x, + 7200 x, + 10080 x 3 Subject to 80,000 x, + 100000 x, + 100000 x, ≤ 40,00000 [Finance constraint]

 $\chi_1 + \chi_2 + 2\chi_3 \le 100$ (Driver constraint) $\chi_1 + \chi_2 + \chi_3 \le 300$ (Maintenance Constraint)

E X1, X2, X3 >0 [oron-negativity restriction]

10. A farmer owns 200 pigs that consume 90 kg, of Special feed daily. The feed in prepared as a mixture of corn and Soybean med with the following Compositions.

Kg per kg of feed stuff

,	Kg P	protein	Fiber	cost Rs kg
Feed stuff	Calcium	0.09	0.02	0.2
COYM	0.001	0.6	0.06	0.6
Soybean me			· / / / / / / / / / / / / / / / / / / /	C 11

The dietary repuirement of the Pigs are as follows:

- (i) At most 1.1. calcium (ii) Atleast 30% protein
- (iii) Atmost 5%. Fiber Formulate the problem as L.P. P.

Soln! - There are two kinds feed stutt corn and Soybean meal. The quantity of each in the feed raix is to be determined. Hence the decision valiables Corresponds to feed stuff.

Let x1 = kg of corn x2 = Kg of Soybean meal.

The objective function Z will be the sum of cost of each feed stuff and The cost is naturally should be oninimized. Hence Z may be defined as Minimize Z = 0.2x, +0.6x2

There are certain constraints Subject to which Z is to be minimized. For example the daily minimum feed mix required is 90 kg. This may be stated x1+x2>90 by the inequality

The maximum percentage of calcium is restricted to 1, Hence in 90kg, the Calcium will be 1, x90=0.9kg In one kg of mix, the calcium due to corn is 0.001 kg and due to Soy bean meal is 0.002 kg. Hence this constraint may be stated as 0.001 x1 + 0.002 x2 < 0.9 (at mostly addium Illy the constraint for protein and fiber content may be stated as 0.0971, +0.672 > 30 × 90 [Atleast 30]. protein ie >> protein = 0.09x1 + 0.6x2 >> 27 0.02 x1 + 0.06 x2 < 5/100 [Atmost Fibed St. fiber ie = 0.02x1+0.06x2 ≤ 4.5. The variables should be non-negative. These constraints may be stated as x170, x270. Thus the mathematical model of the problem may be

Stated as follows:

Minimize Z = 0.2x, +0.6x2 Subject to 21+ ×2 >90 0.001x, +0.002x2 < 0.9 0.09 x1+0.6 x2 >> 27 $0.02x_1 + 0.06x_2 \leq 4.5$ E N, ×2 >,0.

Graphical Solution to Avariables h.P.P.

A two wasiable problem can be folved by graphical method. This method is impractical or impossible for more than two variables.

In this method, a solution space also called Feasible region, Satisfying all the constraints Simultaneously, is determined. The non-negativity Constraints (x1, x2 >,0) confine all feasible values to the first quadrant.

This quadrant is defined by the space above the horizontal reference axis x1 and to the right of the horizontal reference axis x2. The space enclosed by the Vertical reference axis x2. The space enclosed by the remaining constraints is determined by first replacing remaining constraints is determined by first replacing ≤ 0 > by = for each constraint. Thus yielding ≤ 0 > by = for each constraint line is then a straight line is then

a straight live equation.

plotted on the (x, x2) plane. The region in which

each constraint holds when the inequality is actuated

each constraint holds when the inequality is actuated

is indicated by the direction of the arrow on the

arrow of the arrow on the

Each point within or on the boundary of the Solution Space represents a fearible point. The optimum Space represents a fearible point. The optimum Solution is differentiated by Observing the direction Solution is differentiated by Observing the direction in creases or decreases in which the objective function in creases or decreases in which the objective function in creases or decreases in which the objective function in creases or decreases

plot the objective line passing through the origin.

Move this line as far away from the origin as possible and yet within or touching the boundary of the Solution Space. The optimum solution occurs at that point. The co-ordinate of the point gives the Optionus values of x, and x2.

* Note]: Clearly read the above procedure before solving graphical method. Use graph sheet Endication of arrows for the constraints [> or <] is are vely important in defining Fearible region]

Example: 1. Solve graphically the following L.P.P. Maximize Z = 3x,+2x2

Subject to 71+2×2 ≤ 6 ----(1)

 $2x_1+x_2 \leq 8 ----(2)$

 $x_2 - x_1 \leq 1 - - - - (3)$

 $x_2 \leq 2$ ----(4)

x, x2 >,0

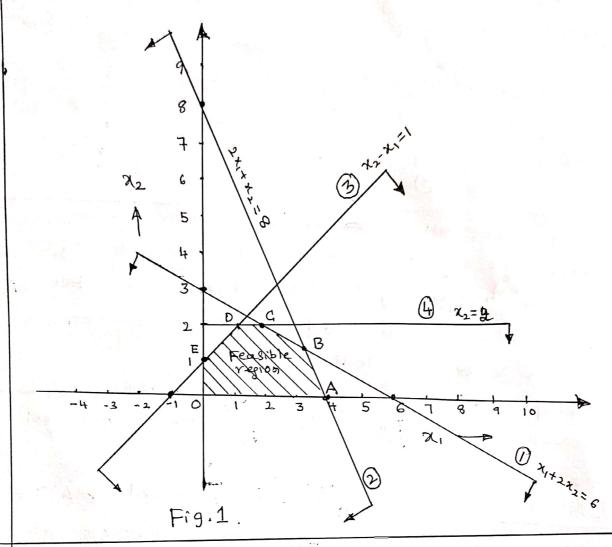
Solution! - Step 1: Convert inequality into equality

Take (1) constraint $x_1 + 2x_2 = 6$

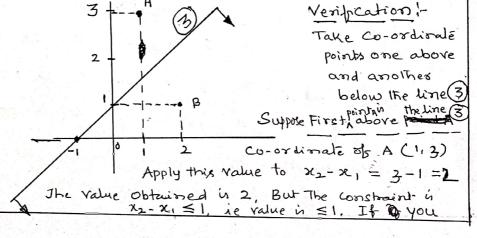
When $x_1 = 0$, $x_2 = 3$ } represent these values when x2=0, x1=6] on the graph to get a St. Line]

1118 (2) constraint 27, + 72 = 8

When x1=0, x2=8 } draw st. Line on The graph. When x2 =0, x1=4


(3) constraint N2-2, =1

when x=0, x2=1 represent St. line on the grayun when 12=0, 21=-1


(4) constraint $M_2 = 2$ -to represent a line.

Draw two axis horizontal and vertical.

Here x, x2 > 0 means all feasible values confine to
first quadrant.

Note: - St. line indicate equality Sign. ie $x_2-x_1=1$ Arrows along with St. line indicate inequality Sign.
For example
Indication of arrows for the constraint (3) $x_2-x_1 \le 1$

Show arrow above the line, the constraints becomes X2-X1 >1.

Suppose take point B below the line 3 The co-ordinate points for B is (2,1) Apply this value to construinto x2-x, <1

ie -1 ≤1, Hence it = 1 - 2 ≤1 Satisfy the Condition x2-x, SI. -1 &1

... The direction of the arrow for the constraint x2-x, 31 in below the line 3.

Fig. 1. Shows all the constraints plotted as Straight lines. The region in which each constraints holds when the inequality is actuated by the direction of the arrow on the associated St. line. The solution Space Or Feogible region in they determined.

The optionem solution can be identified with one of the feasible corner points A, B, C, D and E of the Feasible region.

I METHOD! - Considering co-ordinale perints of O,A,B,C Dand E, which co-ordinate point gives maximum value of Z. that is the optional solution.

At 0 (origin) $x_1=0, x_2=0$ $Z=3x_1+2x_2=0$

At A (4,0) 21=4, 21=0 Z=3x4+2x0=11

At B (3.3, 1.3) 91,=3.3 x2=1.3 Z= 3x3.3+2x1.3=12.67

At G(2, 2) $\chi_1=2$, $\chi_2=2$, $\chi_2=3\chi_2+2\chi_2=10$

At D (1,2) $\chi_{1}=1$, $\chi_{2}=2$ $Z=3\chi_{1}+2\chi_{2}=7$

At E (0, D) $x_1=0$, $x_2=1$, $Z=3x_0+2x_1=2$

The maximum value of Z occur at B (3.3,1.3). that is the Optimum Solution, Max Z = 12.67.

Redundant constraints

These Constraints do not bind the Doletion Space. The solution Space is not affected even if these constraints are irroposed.

2. Determine the Solution Space graphically for the

following inequalities.

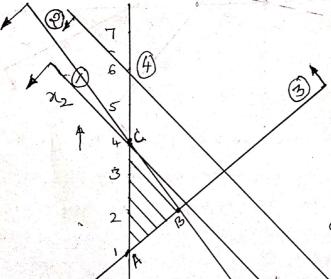
$$x_1 + x_2 \le 4 \quad - \checkmark (1)$$

$$4x_1 + 3x_2 \le 12 \quad - \checkmark (2)$$

$$-x_1 + x_2 > 1 \quad - \checkmark (3)$$

$$\chi_1 + \chi_2 \leq 6 \longrightarrow 4$$

Which constraints are redundant?


Soln: - Convert inequality into equality.

Constraint (1) $x_1 + x_2 = 4$, when $x_1 = 0$, $x_2 = 4$? $x_2 = 0$, $x_1 = 4$]

Constraint 2 $4x_1+3x_2=12$ when $x_1=0$, $x_2=4$?

Constraint (3) $-x_1+x_2 = 1$ when $x_1=0$, $x_2=1$?

constraint (4) $x_1 + x_2 = 6$, votien $x_1 = 0$, $x_2 = 6$ $x_1=0$, $x_1=6$ }

By seeing The graph ABC is the solution Space. The constraints

(1) and (1) are called

Redundant constraint.

Even if you remove these constraints it not affect the Lolution space.

7,-

Find the optional solution to the formulation 3. problem of example. 5. Maximize Z = -0.1x, +0.5 x2 Subject to 2x1+5x2 580 -0.1×1+0.5×2>,6 -+ (2) x1+x2 \$ 20 - 3 x1, x2 >,0 Som: -Convert inequality into equality. Constraint (1) $2x_1+5x_2=80$ votien $x_1=0$, $x_2=16$? x2=0 x1=40} (2) $-0.17_1 + 0.5 \times_2 = 6$ when 21=0, 2=12x=0 x=-60 J $x_1+x_2=20$ when $x_1=0$, $x_2=20$ x2=0, x1=20 3 40 30 -60 -50 -40 -30 -20 To find the value of Z! METHOD: 2: - [Method I is explained in proble on 1 7 put Z=0, ie plot the objective line passing through the Oxigin. More this has fax away from the orgin as possible and yer within or touching the boundary of the solution Spale. Tie Draw iso-lines passing through the extreme corner of the feable region. For Max. Z, iso-line in far away from the origin. Piso-line means parallel line to Z=0]

The isoline Z=1 passes through the extreme corner (0,16) and is the required point. Note: Donot consider the iso-line passing inside the Feasible region, it only pass through the extreme put Z=0 =-0.1 x1+0.5 x2 Corner of the feasible region] 0.121=0.5 \$2 X1 = 0.5 = 50 X2 0.1 10 At C (0,16) Max Z = -0.1x,+0.5x2 Max Z = -0.1x0+0.5x16 Man Z = 8: This value justify the for soul ation probleson (ie old hern and young hern problem) i.e profit is more than 6] Alternate optimum Solution 4. Deterorione graphical Solution for the following LPP. Maximize Z = 5x2-x1, Subject to 2x, -x2>,-2 or -2x, +x2 5 2 Also $-0.2x_1+x_2\leq 2 \longrightarrow (2)$

and 21,22 >0

Solution! . convert inequality into equality.

(1) Constraint $-2x_1+x_2=2$, when $x_1=0$, $x_2=2$ $x_2 = 0, x_1 = -1$

(2) Constraint -0.2%, +%, = 2 when %, = 0, %, = 2X2=0, X = -10 3

\$(5,1) 7=0

Put
$$Z=0=5x_2-x_1$$

$$5x_2=x_1$$

$$\frac{5}{1}=\frac{x_1}{x_2}$$

The objective function Z=0 is parallel to the constraint 2. Hence all points on the lin 2 represent optimum solution. For example

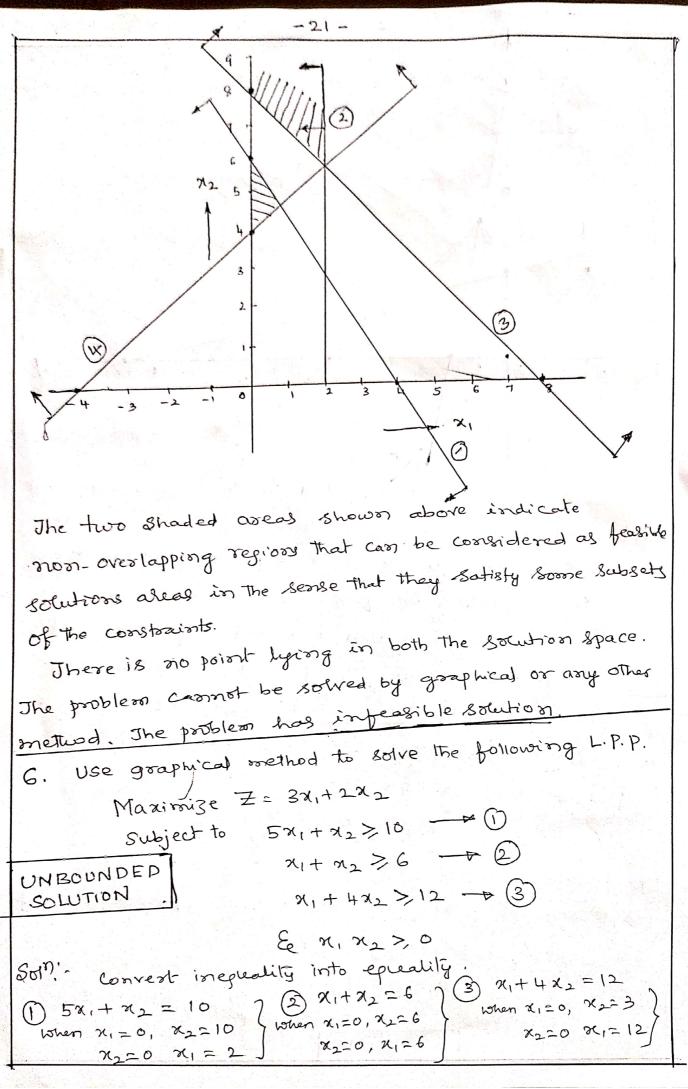
at A (0,2) $Z_{max} = 5x_2 - x_1 = 10$ at B (-5,1) $Z_{max} = 5x_1 - (-5) = 10$ at C (-10,0) $Z_{max} = 5x_0 - (-10) = 10$

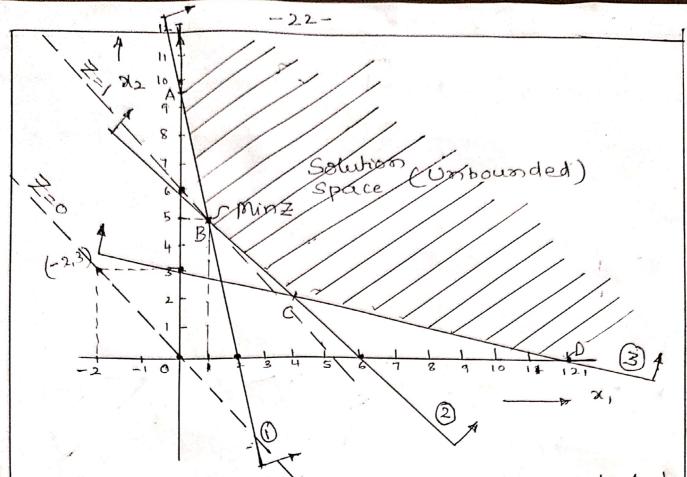
Such solutions are called alternative optima. Even if the values of x, and x2 are arbitrarily large, the value of objective function will be some.

Infeasible solution!

5. Solve graphically the following LPP.

$$\alpha_1 + \alpha_2 > 8 \rightarrow 3$$


$$-\alpha_1+\alpha_2 > 4 \longrightarrow 4$$


Convert inequality into equality.

(1)
$$3x_1 + 2x_2 = 12$$
 when $x_1 = 0$, $x_2 = 6$?
 $x_2 = 0$ $x_1 = 4$

(3)
$$x_1 + x_2 = 8$$
 when $x_1 = 0$, $x_2 = 8$?
 $x_2 = 0$, $x_1 = 8$?

$$4$$
 $-x_1 + x_2 = 4$ been $x_1 = 0$, $x_2 = 4$ $x_3 = 0$ $x_4 = -4$

The solution space is bounded on the lower side, but not on the Upper side as shown above. The objective line (int in maximum) can be moved indefinitely. Hence there is no finite value of Z. The problem is said to have Unbounded solution but not infeabible solution have Unbounded solution but not infeabible solution Note: The solution may be found if the objective function is to be minimized. The point B definites the optioness solution (ie Z is minimum)

$$put Z = 0 = 3x_1 + 2x_2$$

 $3x_1 = -2x_2$ $\frac{x_1}{x_2} = -\frac{2}{3}$

The Minimum value of Z occur at B (The extresse point B) nearest to the origin. Z=1 line is parallel to Z=0] The co-ordinate points of B (1,5)

$$Min = 3x_1 + 2x_2$$

= $3x_1 + 2x_5 = 13$
 $Min = 13$

T. solve the following LPP graphically

Maximize $Z = 6x_1 - 2x_2$

Subject to 2x1-x2 <2

x, \$3

x1, x2 >0

ANS! Solution space is unbounded. The finite maximum exists. They am unbounded solution space does not always means an unbounded solution.

Zmax = 10 at co-ordinate point (3,4)

8. Deterosione grouphically the original and maximum and

Z= 4x1+5x2

Subject to 2x1+ x2 56

x, +2x2 55

 $\chi_1 - 2\chi_2 \leq 2$

 $-\alpha_1+\alpha_2 \leq 2$

x, + 22 > 1

E x1, x2 >, 0

ANS: - The extreme point of the solution space occarest to the origin is the original value of Z. and the point faithest from the origin is the maximum value of Z.

Zonin = 4 at (1,0)

Zonax = 16 at (2.66, 1.33)

--×-×-

MODULE -

TRANSPORTATION PROBLEM

If there are more than one centre called origins or sources from where the goods needs to be transported, to more than one place called destinations. Cost of the shipping of cost of transportation from each of the shipping of cost of transportation being different origin to each of the destination being different and known. The problem is to transport the and known. The problem is to transport the goods from varies origin to the different destionation goods from varies origin to the different destionation such a way that the cost of transportation is

Tabular Form !-

1 0	Destination	Supply
0	D, D2 D3DjDn	Capacity.
0)	C11 C12 C13 C1j C1n	α_1
02	C21 C22 C23 C2j · C2n	a ₂
03 Origins	C31 C32 C33 C3; C3;	Q 3
	Ci, Ci2 Ci3 Cij Cij	
0m	Con cm2 cm3 Cmj Cmý	am
Demand	b, b2 b3bjbn	m π Sai = Σbj i=1 i=1
Requirement		<u>.</u>

There are in original 0,02 ---- om and in destinations Di, Da Don. Let aiaz, a3 --- ans be the quantity of goods available at the origins, 0, 0, 0, 0,000 om and bi, be by ... by be the quantity of goods repressed at the destinations D, D2, ---- Dor.

Let Cij be the cost of transporting one unit from its origin to judestination, the objective is to determine the quantity dij, so that the total

transpostation cost is minimum

Mathematically the problem can be stated as to find suj to minimize the transposition cost.

 $Min Z = \sum_{i=1}^{m} \sum_{j=1}^{n} C_{ij} x_{ij}$

Subject to the constraints

 $\sum_{j=1}^{n} x_{ij} = a_i$ where $a_i = 1, 2, 3 - \cdots > n$

 $\sum_{\substack{j=1\\ j \geq 1}} y_{ij} = b_j \quad j = 1, 2, 3 - \dots n$ (column Sum)

E rij > 0 for all i and j.

The given bransportation problem is said to be balanced

y ∑ai = ∑bj

i.e. if the total Supply is equal to the total demand.

DEFINITIONS!

Feasible Solution: Any Set of non-negative fallocations (ie xij >, 0) which satisfies the row and Column sum is called a feagible solution.

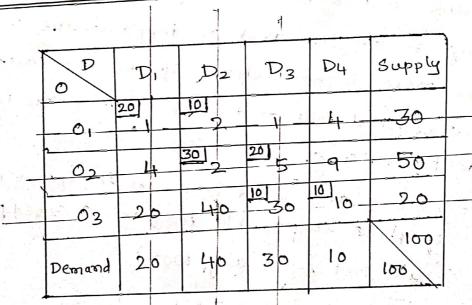
BASIC Feasible Solution: A feasible solution to m' origin, to n' destinating are said to be if the no! of the allocations are (m+n-1) one less than the number of rows and column.

Non-degenerate Basic feasible solution

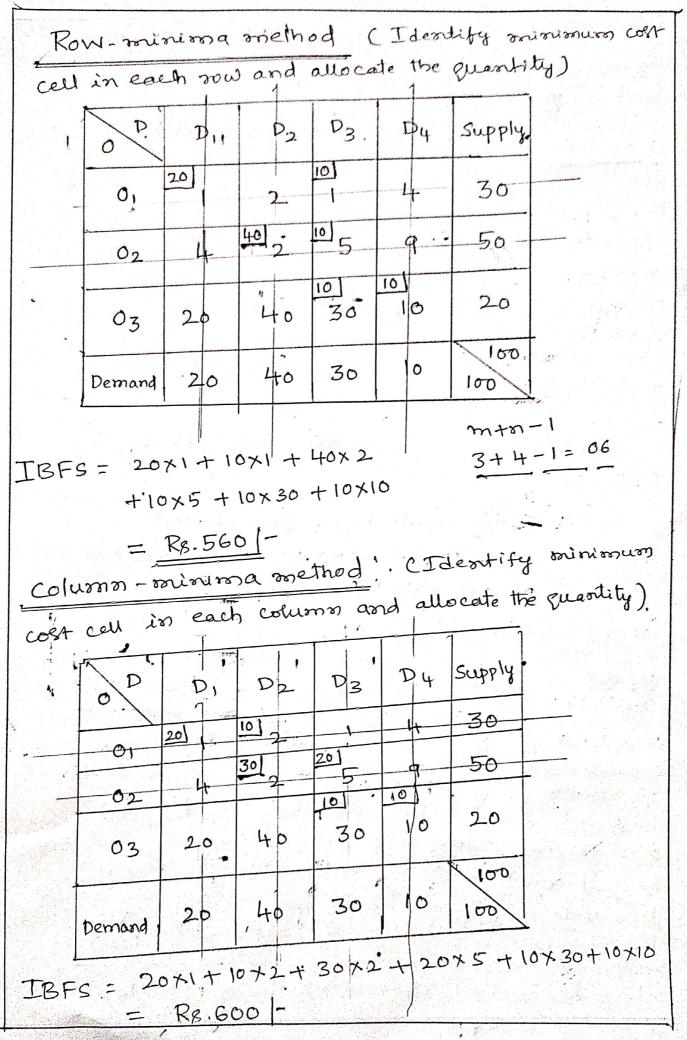
Any feasible solution to a transportation problem Containing on origins and or destinations is Baid to be non-degenerative, it it contains m+n-1 occupied cells and each allocation is in independent positions.

The allocations are societ to be in independent positions, if it is impossible to form a closed path. (i.e it should not form any look).

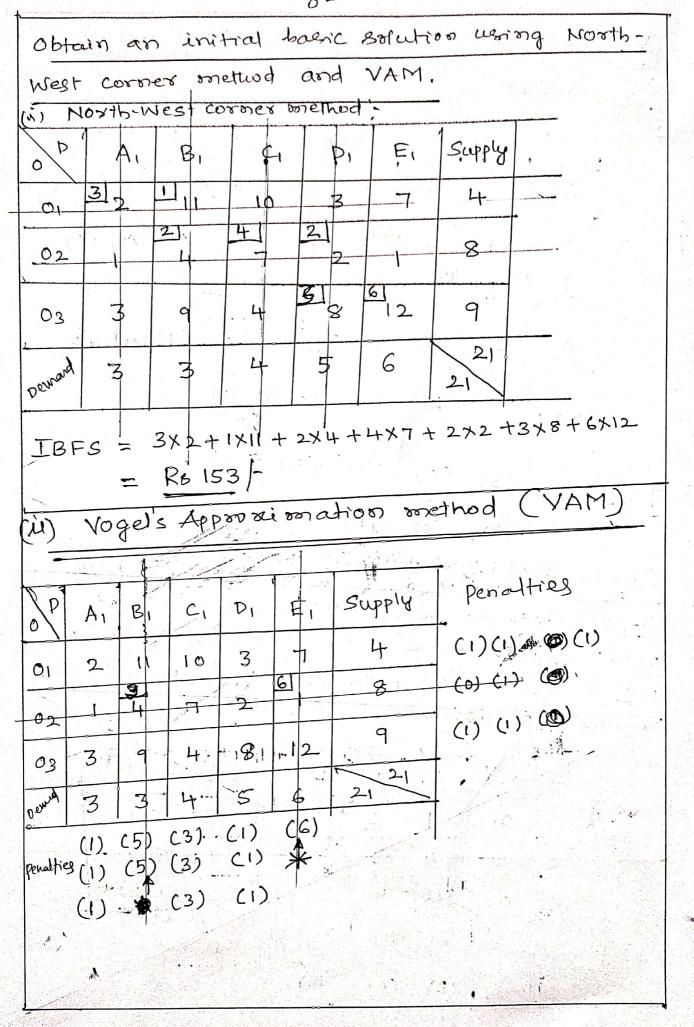
Degenerate Basic feasible Solution! - If a basic feasible solution Contains less than (m+n-1) non nepative allocations, it is social to be degenerate. Optional Solution! A feasible solution is said to be optional, if it minimize the total toangrostation Cost.

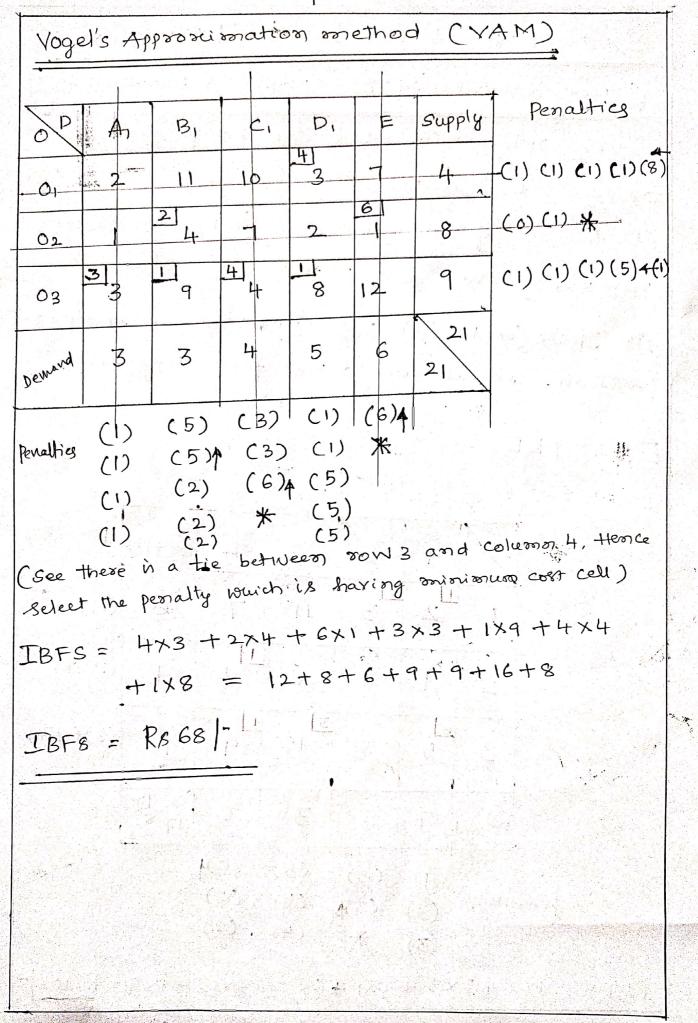

Initial Basic feasible solution .

The initial basic feasible solution can be obtained by any one of the following methods.


- (i) North-West corner rule (N-WCR)
- (ii) Row-minion a method
- (iii) Column minima method
- (iv) Least oost method or Matrix-minima method
- (v) Vogel's approximation method (VAM)

Obtain initial basic feasible solution for the following problems using the above methods.


1) North-West Corner method .



20×1. +. 10×2 + 30×2 + 20×5 + 10×30 + 10×10 IBFS = = R8.600

Least cos	e de la composition	had o	y Matri:	a Min	ima m	nethod	
Least cos	St 00)E1	t) Gr Gr			alur	and	
Liderdify	שרונה ורגליירה לרה בינים	ito 1 1	Centralum Mariralum	cost vi	I in the	malour, ei	Thes
allocate the	e cica oq	r allalla	cate eva	atily t	p coll(1)	17 04 (1/3)
Suppose an (111) Here	00	p,	Da	D3	Dy	Supply	
20; of	production may be a state of the	20	and the same of th	10	an ann a san aire agus an agus		
allocations	-01		7	No. of the second second	Angele de la regional de la companya	30	and an experience of the second
Obtained	and the second s		40	10)5	q .	50	
ye we son	02_			The second second			
WE WE COPERATE		20	40	30	10	20	
3+4-1=6	03			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12 y 1		
allocations	e e e e e e e e e e e e e e e e e e e	20	40	30	10	100	
obtained ale	Demand				10 - 5	100	
6. Hence			9 41 11 1			1315	
it is a nex	n-degro	resate	basic	feasi b	le -301°.	*	10
TOTA - 20	0 x 1 + 1	0 ×1+1	40 x2 4	10×5	+1/0×3	30+10×	.10
5	20+10	+80+	50+3	300 + 1	0.0		
IBFS = RE	,560	-	OR.				
suppose	D	P,	D ₂	D3 .	Pu	Supply	
ceu (1,3)	0	1.5	1 y	30			
Here Allocations	01		7-		-4	30	
obtained are 05, which is		101	40		Q	50	
less than	02			3		30	- 8.
(m+n-1) = ie 06	Δ-	20	40	30	10	2.0	
Hence it is a	0,3		770	1	10		
denegerate	Demand	20	40	30	10	100	
banc fcolible	Dev 1					100)	
son. IBBS = 3	0×1+1	0 × 4 +	40×2	+ 107	20+10 R& 450	×10	
					NS 436		

OPTIMALITY TEST by MODI METHOD OR

QU-V method (MODI - Modified distribution)

. The optimality test can be performed on feasible solution, in which

(i) the no: of allocation is (m+n-1) where m- no: of rows and n.+. no. of columns.

(ii) These (onton-i) allocations are in independent position. i.e it should not form any loop.

EXAMPLE: .

							-
1	0/	1	No.	3	4	Supply	Pernalties
	1	2	5]		7-	6	(+) (1)(5)
	-2		0	- 6			(ı)_*
	3	<u>6</u>] 5	80	3 15	9	10	(3)(3)(4)
	Demand	1	5	3	2	17	
peno	LHies	(1) (3) (3)	(3) (5) *	(C5) (4) (4)	(e) (2) (2)		

IBFS = 1×2+5×3+1×1+6×5+3×15+1×9= R8102

Now apply optionality test.

Here (i) No: of allocations obtained = 6 o and No: of allocations required = (m+n-1) = 3+4-1 = 06

and (ii) These allocations are in independent position. (i.e it should not form any loop) Hence it is eligible for optimality test.

BY MODI METHOD

(i) Deteronine the set of arbitrary numbers Ui and vi for all occupied cells,

Til Find out a set of mumbers wi and vj for each row and column satisfying Cij= ui+vý for each occupied cell. To start with, we asking of a necomber, to any row (Say u,=0), and entering Successively the values of hi arold Vj on the toansportation problem.

(ii) Determine the net cell evaluation ie cij-(mi+vj) for all unoccerpied cells.

(iii) If all cij-(ui+vj) >0 Then the solution is Optimal, otherwise we are proceed to find leaving and entry valiables.

	경우 이 경우 전 경우 경우 보고 있다. 그 사이 보고 있는 것이 되고 있는 것이 되었다. 그런 그 것이 되었다. 그런 그 것이 되었다. 그런 그 것이 되었다.
Let	$u_1=0$ $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ $\begin{bmatrix} 5 \\ 3 \end{bmatrix}$ $\begin{bmatrix} 11 \\ 11 \end{bmatrix}$ $\begin{bmatrix} 7 \\ 11 \end{bmatrix}$
	$U_2^{=-5}$ $U_2^$
	$u_3 = 3 \begin{array}{ c c c c c c c c c c c c c c c c c c c$
	v ₁ v ₂ v ₃ v ₄
Let	U=0, for cell (1,1) (occupied cell) C== U+Vi
	$2 = 0 + V_1 \boxed{V_1 = 2}$
	$C_{22} = U_{1} + V_{2}$ $3 = O_{2} + V_{2}$ $V_{2} = 3$
	$C_{24} = U_2 + V_4$
	1 = 42+V4
	$C_{31} = U_3 + V_1$ $\boxed{5 = U_3 + 2} \qquad \boxed{U_3 = 3}$
	$C_{33} = U_3 + V_3$ $15 = 3 + V_3$ $V_3 = 12$
	$C_{34} = U_3 + V_4$ $Q = 3 + V_4 \qquad \boxed{V_4 = 6}$
• - •	$1 = u_2 + v_4 \rightarrow 1 = u_2 + 6 \boxed{u_2 = -5}$
	B/=/42AX27/137-875

Now determine (Cij - (ui + vij)) for all unoccupied Cells. i.e $C_{13} - (vi + vi) = 11 - (o + 12) = [-1]$ $C_{14} - (ui + vi) = 7 - (o + 6) = 1$ $C_{21} - (u_2 + v_1) = 1 - (-5 + 2) = 4$ $C_{22} - (u_2 + v_2) = 0 - (-5 + 3) = 2$ $C_{23} - (u_2 + v_3) = 6 - (-5 + 12) = [-1]$ $C_{32} - (u_3 + v_2) = 8 - (3 + 3) = 2$

Here All cij-(ui+vj) \$ 0. Hence solution is not optimal. Then we have to proceed to find entry and leaving valuables.

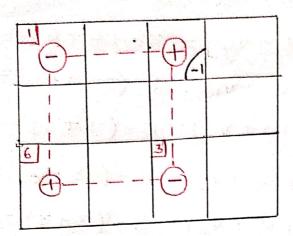
Here the two cells (13 and C23 having negative Values. Select the minimum negative value but here two cells. C13 and C23 houre Same negative value, [Choose any cell, so that it negative value, [Choose any cell, so that it to that it so that it

cell (C13). From this

cell we draw a closed path

by drawing horizontal

and vertical lines with


the corner cells occupied.

Assign Sign + and - alternately

and find the minimum

allocation from the cell having negative sign. This allocation should be added to the allocation

having positive Sign and Subtracted form the allocation having negative sign.

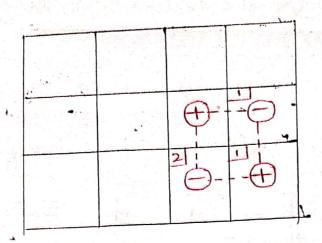
Frankle solo. Again apply MODI method (ie conduct optimality test

			and a line	
U,=0	2/	<u>5</u>		7/2
U2(-4)	1	0/	6/1	1
u3=(4)	7]	8/	2	1
3	(1)	(3)	(11)	(5)

(i) No: p allocation

Obtained = No: opallocation

repuised


O6 = (m+n-1) = 06

(ii) and these allocations

are in independent

position.

Let U=0, and find I hemaining abstraly numbers
Determine Cij-(ui+vj) for all unoccupred celly.
Again in new matrix, The only cell (C13)
is negative, thence solution is not optimal.
Again find leaving & entry valuables.

@min (112)

= 1

New basic feasible 801" (New matrix becomes)

Apply optionality test. (1) No: of allocations = No: of allocations

Apply optionality test. (1) No: of allocations = No: of allocations

Apply optionality test.

 $U_1(0)$ $\begin{bmatrix} 5 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 11 \\ 7 \\ 2 \end{bmatrix}$ $U_2(-5)$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 0 \\ 2 \end{bmatrix}$ $\begin{bmatrix} 11 \\ 6 \end{bmatrix}$ $\begin{bmatrix} 11 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 21 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 11 \\ 21 \end{bmatrix}$ $\begin{bmatrix} 21 \\ 15 \end{bmatrix}$ $\begin{bmatrix} 11 \\ 21 \end{bmatrix}$ $\begin{bmatrix} 21 \\ 15 \end{bmatrix}$ $\begin{bmatrix} 11 \\ 21 \end{bmatrix}$ $\begin{bmatrix}$

of = 06 of these allocations are in independent position.

Determine Cij = Vi+vj for all occupied celly

Determine Cij-(ui+vj) for all unoccupied cells

Here in the above cell All cij-(42+49)>0.

Hence solution is optimal.

Optimal 8. of which = 5x3 + 1x11 + 1x6 + 7x5+ 1x15 + 2x9

Optimal solution = 15+11+6+35+15+18 = R_100/-IBFS = RS 102, Hence the solution is improved. In solution is in solution in solution in solution in solution is in solution.

DEGENERACY IN TRANSPORTATION

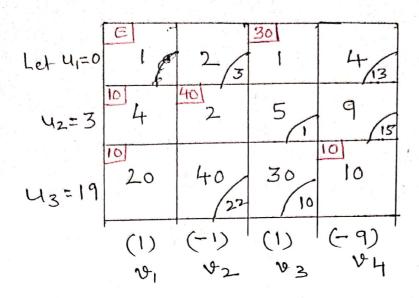
Example;

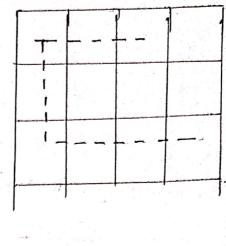
	- 7	7		4	
0	Di-	· D2	D ₃	D4	Supply
01	1 .:	2	30	4	30
02	10 4	40l 2	5	9	50
03 bearing	20	40	30	, 10	20
Demand	20	40	30	10	100

(After Applying VAM; The allocations of obtained as shown above)

IBFS = 30XI + 10X4 + 40X2 + 10X20 + 10X10= Rs 450/-

Optimality Test! -


(i) There should be (80+10-1) allocations
i.e (3+4-1) = 06).


Here Number of allocations obtained is <u>os</u> Hence the problem is degenerale transportation problem:

HOW TO RESOLVE IT: Allot (E) to a least

Cost cell, so That new allocation does not

form a closed loop. Apply now optimality test.

No: of allocation now obtained = 06 No: of allocation required = (m+n-1) = 3+4-1=06

and these allocations are in independent position.

Determine Cij = (ui+vj) for all occupied cells.

Determine Cij - (ui+vj) for all unoccupied cells.

Determine Cij - (ui+vj) for all unoccupied cells.

All Cij - (ui+vj) ≥0 Hence soli is optimal

Optional cost = EXI + 30XI+10X4+40X2+10X20 + 10X10.

Tending E+0 (Eisa vely small quantity).

Optimal west = Rs 450 |-

A company has 4 warehouses and 6 stores. The Warehouse's all together have 22 units of commodity, divided among theoreelves as follows!

Warehouse	Commodity
1	5
2	C
3	2
4	9
	22 Umb

The 6 Stores together needs 22 units of this Commodity. Individual repuirements are

Store		Comono dely
1		4
2		6
	, î · ; ; ;	2
4		4
S	4 A	2
6		22 voils
		The state of the s

The cost of shipping one unit from ware house it to Store; as shown in Below. Find the Shipping Schedule which minimizes the cost.

Table.1

Sar.								
	P		2	3	4	5	6	Supply
Let u1(0)	0	9/3	12/12	5 q	6/4	9/7	10/8	5
U2(3)	2.	7	43	7/3	7/2	5	5	6
u3(0)		11 ₆	5/5	7 11	2/2	3/1 4 ₂	10/8	9
U4(0)	Reguirement	14	8/8	6	2	4	2.	22
	Resu.	(6)	(O) V2	Table 112	(2) 3. VL	(2) + V5	(2) V6	

Solution: Here Demand = Supply Hence it is a balanced transportation problem.

[Apply YAM to get the allocation, it is shown in the

Table.1]

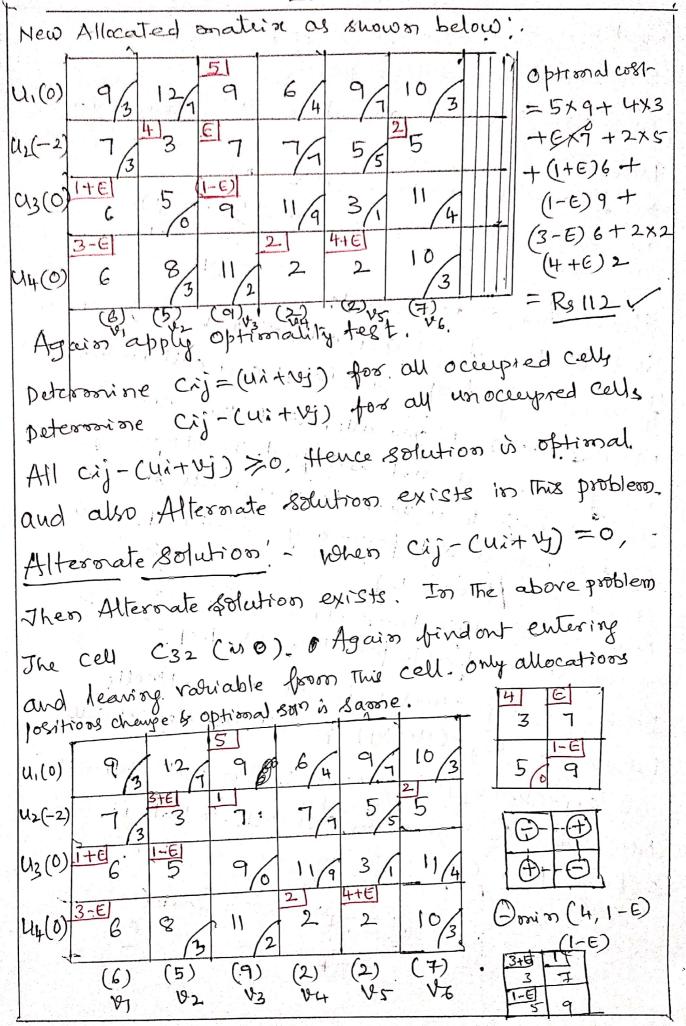
No: of allocations obtained = 08

No: of allocations repuirement = (m+n-1) = (4+6-1)

Allot 6 to a least cost cell, so That it should not Hence degeneracy exists. formed any loop. The least cost cell in this table is C35. (ie 3). If you allot 6 to this cell, it foross a loop. Hence it not satisfied the optimality test. Then allot & to a next least cost cell is C25 08 C32 80 That it not form any closed cell. Now

choose C25, (cost is 5).

Now No. of allocations obtained = 9


Hence it is eligible for optionality test.

Determine Cij = (ui+lij) for all occupied cells Détermine cij-(ui+vj) for all unoccupies cells

All Cij-(ui+vj) \$0, Hence solo is not optional. Now Identify minimum cost cell, so that it forom

a loop. Here (-5) is the uninionum origative.

(E, 1, 3)

All cij-(ui+vj) ≥ 0 , Hence Solution is optimal.

Tending $\in -+0$ Optimal $\in +0$ $(1+\epsilon)\times 6 + (1-\epsilon)\times 5 + (3+\epsilon)\times 3 + 1\times 7 + 2\times 5$ $(1+\epsilon)\times 6 + (1-\epsilon)\times 5 + (3-\epsilon)\times 6 + 2\times 2 + (4+\epsilon)2$ = 45+9+36+7+10+6+66+5-56+18-66 = 45+9+36+7+10+6+66+5-56+18-66 = 45+9+36+7+10+6+66+5-56+18-66

UNBALANCED Transportation problem'-

when demand + supply then the problem is

Example: 1. A tentile firm has 3 factories F., F2

F3 and four ware houses W, W2, W3 EW4. The

Fransportation cost, the factory capacity and

transportation cost, the factory capacity and

warehouse requirement are given in the following

warehouse requirement are given in the following

table. Determine the Schipping Schedule to minimize

the cost.

				196	\ \ \ \ \		
,	W	W	W2	W3	. W4?	Capacil	-
	F	15	24		12	500	
	F2.	25	20	14	16	400	
	F3	12	16	22	13	700	
	Requirement	300	250	250	400		1

Solution!.

Ecapacity = 1600 units

5 repuirement = 1300 Units

Excess capacity = 1600-1300 = 300 units

Intorduce a decorrary repulsement in the transportation

table with cost of transportation is zero.

The matrix become	n eg	APF	oly YA	Mito	get I	BFS,
EW W.	W2	W3	W4	MD	Capacit	Penalties
5 F. 15	24	350	150	— — — — — — — — — — — — — — — — — — —	500	(1) (1) (1)(3)(3)
F1 25	20	14	16	360	400	(4)4-(2)(2)(9)*
4 350 12	5016	2.2	150	6 0		(12) (1) (1) (1) (1)
Repuire 300	250	350	400	300	1600	The second second
Penalties (3)	(4)	(3)	CIS	(0)	/ ·	1
Now (3)	(4)	(3)	2C1) (*	a de	A.
it becomes (3)	*	C37	31.1	j en		
bolanced (3)		*			0	
(2)			C,)	1.5 1.1 1		

IBFS = 350×11+150×12+100×16+300×0+300×12 + 250×16+150×13 = Rg 16,800

Optimality test: No: of allocations obtained = 07

No: of allocations required = (m+n-1)
= 3+5-1=07

and these allocations are in independent position. Hence It is eligible for optionality text.

Determine Cij-(uitvj) for all unoccupied cells.

Let un(o)	15/4	24	350	150	0/4
(12(4)	2-5/0	2.0/1	14	16	300
U3(1)	12	16	22/10	13	0/3
	(11)	(15) V2	(11) V3	(12-) V4	(-4) V5

All Cij- (ui+vj) \$0 Hence solution is not optimal.

Here only cell C23 is -1. Try to find entry and

dearing variables.

G---

		4	Y	8
P 10 - 1				
79 12.	1			. (
6	•	4.	•	1.
-	<u> </u>		un (3	

New Me	atrix.	table	(L)	(2-)	
U, =(0)		24/9	200	12	0/3
(0) Uz=(3)	,	20/2	14	16/1	300 O
(3) (4)	300	250	22/10	150	0/2
(9)	(14)	(15)	(11)	(12)	(-3) V117

Again apply optionally

No: of allocation = 07 Obtained No: of allocation = 07 repurred and These

altocation ou in independent positions.

Determine cij = (ui+vj) for all occupied cells.

All cij- (ui+vj) > 0 Hence solutron is optional.

i. Optional coll = $250 \times 11 + 250 \times 12 + 140 \times 14 + 300 \times 0$ + $300 \times 12 + 250 \times 16 + 150 \times 13$ = $R_8 16700$

Ex.2: A product is produced by 4 factories

ABCD. The Unit production cost in these care

R\$ 2, R\$ 3, R\$ 1 and R\$ 5 respectively. This production

Capacities are A = 50, B = 70, C = 30, D = 50 unit.

These factories supply the product to 4 stores.

The demand of which are 25, 35, 105, 20 units

Yespectively. The unit transportation cost in R\$ from

Yespectively. The unit transportation cost in R\$ from

			_		
	FS	1	2	3	4
	A ,	2	4	6	11
1	В	10	8	7	5_
	C	13	3	9	,12
	D,	4	6	8	3

Determine the extent of delivery from each of the Determine the extent of the & stores, so that the total factory to each of the & stores, so that the total production and tourspostation cost is minimum.

Solution - Total cost = Total production + Total tourspostatus
cost
cost

Total cost A1 = 2+2=4 1114 for B1, B2, B3, B4 A2 = 2+4=6 C1, C2, C3, C4

A3 = 2 + 6 = 8

D1, D2 D3 D4

A4 = 2+11=13

The final matrix becomes

			á sa com a com				-
,	FS		2	3	4	Capacil	-
	Α	4	G	8	13	50	
	В	13	11	10	,8	70	
	C	14	4	10	13	30	
	D	9	11	13	8	50	
	Demand	1 5	3'5	192	20:	1830	
~			1			d .	

Total Capacity = \(\superscript{Capacity} = 200 units \)

I Demand = 185 units Hence it is unbalanced

Excess capacity = 200-185 = 15 voits.

Introduce a during requirement with associated

Cost as &	, , , , ,					 	1 .55	.,
***	FS	7 1	2_	3/	4	\$ D	capacily	,
Let U1(0)	A	25	5	201	13/10	0/2	50	
U ₂ (2)	В	13/1	11/3	55] 10B	8/3	15T	, T o	
U3(-2)	С	14/12	30 4	10/4	13/12	(1)	30	
a4(5)	D	9/0	11/6	301 13	8	0/-3	200	
	pomicia	25	35	105	201	15	200	
		(4)	(G) Y2-	(8)	(3)	(-2)		

Now It- becomes (1) Balanced. Apply VAFA to get-TBFS. and the following, allocations got by using VAM. IBFS = +20x8 = RB 15101 No: of allocations repuised = 8
No: of allocations repuised = (m+n-1)=(4+5-1)
= 08.

and these allocations are in independent positions. Hence it is cligible for optimality test.

Determine Cij=(ui+vij) for all occupied cells.

Determine Cij-(ui+vij) for all unoccupred cells.

All cij-(witry) to Hence solutions is not optional.
New matrix becomes

•	NECO	holorogi.		~	<u> </u>			
Let U1(0)	25 H	5 G	8	13/2	0/5	(A)	(5)	(;
$u_2(2)$	13/4	11/4	0 / O	8/3	3	1	1	
U3 (-2)	1 11. 1	30 4	10	13	0 7	6	- A	
ug (5)	90	11/0	13 *	S	0	Danier Construction	(15, 3	0)
	(4)	1(6)	(8) V2	(3)	(-5)	In .	=15	ر د
	V	V-2	v 3	V4	V3.	* *	**	

All cij- (uitvj) >0, Hence solution is optional.

Optional cost: 25x4+5x6+20x8+70x10+30x4 + 15x13+20x8+0x15

Ex: 3 Consider the unbalanced toansportation problem, since there is not enough supply, some of the dermand out these destination may not be Satisfied. Suppose there is a penalty cost for every unsatisfied dermand unit which are given every unsatisfied dermand unit which are given by 5, 3 & 2 for destination 1, 2, 3 respectively. Determine Optimal transportation cost.

95					
	Evon 10	1	2	3	Supply
•	1.0	5	1	7	10
	2	6	4	6	80
	3 -	3	2	5	15
	Demand	75.	26	50	145

Solution: - (HINT) Ssupply = 105 & Demand = 145 Excess demand = 145-105 = 40 units

Introduce a dummy d'Capacity with penalty cost as 5,3 and 2 respectively.

`	· ·				(1) b	
1	trom to	1	2.	3	Supply	Hence it is balanced T-P
4		5		7/	10	ANS'.
l	, 2	6	4,	6	80	= Rs 595
1 10 11	3	3	2_ /	5	15	
•	4	5	3	2	40	
	Demand	7-5	20	50	145	+

Extu. The Unit cost of transportation from file i to sile i and given below. At site i = 1,2,3, the stacks are to be rest to silet are available soo waits are to be rest to silet and the real to the sile 5. Tive the cheapest way by doing this.

V	Gilej Silei	l.	2	3	la la	5	Stocks
1		Accessor.	3	s s	10	P	150
	2.	l	Velor	2	16	G	200
			la la	page 1	12-	13	170
		8	3	q	passed	Jane: 1200	and the second control of the second control
	5	2	1	100	5	1000	
	Demand				300		

Supply the above at table get reduced to

Silai	had	S	Stocks
Silei	A CONTRACTOR OF THE PARTY OF TH	The same and same	CONSTRUCTION OF THE PARTY OF
NAMES OF STREET, STREE	10		150
2	L. Co	G	200
3	124	Marine de de marine e	(170
pomound	300	220	520

ANS:.
Optional cost
R8 4680 |-

Ex. 5: - A company has factory A, B & C.
Which Supplies to weavehouse D, E F & G. The
factory Capacities are 230, 280, 180 respectively
for regular production. If overtime production
is utilized. The capacity can be increased upto
is utilized. The capacity can be increased upto
300, 360, 190 respectively. The current Warehouse
Yepcirements are 165, 175, 205 and 165 respectively.
Unit shipping cost in R3. between the factories
and Warehouses are given in the table. Determine
and Warehouses are given in the table. Determine
the optimum distribution for the company to
minimize the cost, if the incremental unit only
time cost are Rs 5, Rs 4 & Rs 6 respectively.

						1
_]		D	E	F	, G	Ī
	Α	zelle	8	o	11	
	В	[5]		8	4	
	C ,	4	23	3	12	
y- 14	1					_

Sol": - Overtime production can be represented as additional factories, producing the items at their corresponding higher cost. The shipping cost for overtime shipponent from factory A to Warehouses D.E. F & G are 5+7, 8+5, 9+5, 11+5 regreetively. Overtime Shipping cost from factory B and c to the wavehouses D. E. F & G are cost from factory B and c to the wavehouses

D. E F & G are Calculated in The same manner

		n - Lis de vin d'				,		
		D	E	F	G	Capacili		acily 350 umbs
	A	η .	8	9	11	230	EReju	iressect
	В	5	TI .	8	7	280		10 Units
	C	4	23	3	12	180	and a final control of	= 140 mg
	Α'	12	13	14	16	70	a duro	es of
	β1	9	1.5-	12		80		angentos
7	اے دا	10	29	9	18	10	* 63)	+v 3
	Require	165	175	205	165		.	
	· · ·		3.9		6 3	WD 1	capacity	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	D	E-	F	<u>G</u>	Ó	230	
	4	5	8	8		6 -	2.80	Hence
	B	4	23	3	12	· / O. · / ·	180	it is balanced
	A	12,	13	, 14	16	10	70	r Seeling
gfs.	В,	9	15	12		6	જ	
	Cı	10	29	9	18	0	10	
	Repuire ment	165	175	205 (165	140	628	

MAXIMIZATION PROBLEM.

A company manufacturing our cooler has two plants located at Bombay and Calcutta with Capacities Of 200 units and 100 units per week respectively. Company supplies our cooled to its 4 showsoons Kituated at Ranchi, Delhi, Lucknow and Kanpia, Which have max derorand of too, 75,100 and 30 Units respectively, the to difference in down material costs and transportation costs, the profit per unit in Rupees differs, voluich is shown in

table below.	Ranchi	oethi	Luckno	w Kanpun
Bomboy	14	90	100	110
white winds	Con	+70	130	85

plan the production program so as to maxionize the Probit-

Solution. Maximization problem is converted into roviorization problem, all the elements can be subtracted from the highest element in The given dable, The tuble & becomes

	40	40	30	20	200
Street Comment	80	60	0	45	100

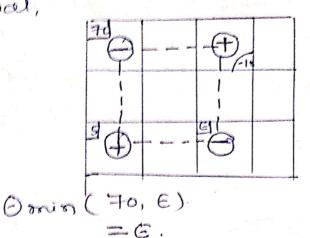
HINT, If it is a maximization problem, Firstly Convert into oriniproization problem and then Total Supply = 300 Uni 6 onake it balance Total demand = 305 Units

the excess demand. with cost as zero.

	-				4	A service and a service of	-
Apply		Randu	Delhi	Lucknow	Kanpuş	Capacil	-
to get the	BOMBAY	40	100 40	30	30) 20	200	Photogrammon and property
allocations	KOLKATA	80	60	0	45	100	STATE OF THE PARTY
	Ds	5	0	0	0	5	
Optimality test!	Demand	75	100	100	30	305	

No: of allocation obtained + No: of allocation required (min-1)

Hence degeneracy exists.


Allot E to a least cost cell, so That it should not form any loop.

	[ATA]	1100		30	3
Let 4,(0)	40	40	30	20	A TOTAL PROPERTY OF THE PARTY O
U2(-40)	80/91	60/60	0	45/65	A CONTRACTOR OF THE PROPERTY O
uz (-40)	50	0/0	E 0	0/20	
	(40)	(40)	(40)	(20)	· · ·
	197	V2		193	_

Determine cij=cui+vij) for all occupred cells.

Determine cij-cui+vij) for all unoccupred cells.

Optional,

Therefore new matrix becomes

	70-€	100	ϵ	30
Let ui(0)	40	40	30	20
11 /-203	CA	. ()	100	45
U2(-30)	80/	50	0	55
U3(-40)	5+6	0	0	, 0
36 19		0	10	20
	(40)	(40)	(30)	(20)

Again apply optionality test.

All cij-(vityj) >0, Honce solution is optimal.

Tending & To, CHinta profit table is also cation is taken)

2. A Firm has 3 factories located at Cities A, B, C respectively and supply goods to 4 dealers 1, 2, 3 & 4, &pread all over the Country. Production capacities are 1010, 700 and 900 units per month respectively. Monthly order from dealers are 900, 800, 500 and 400 order from dealers are 900, 800, 500 and 400 respectively. The per unit return @ excluding transportation cost are R88, R87, R89 at 3 falore transportation cost are R88, R87, R89 at 3 falore unit production cost from factories to dealers unit production cost from factories to dealers are given below.

J. V-23)	~ .		2	13	14
	cityA	2	2	2	4-
Factories	City B	3	5	3	2
	City 9	4	3	2)

Deteronire the optimien distribution systems to onexionize the lotal return.

Folution: From the given data, the sonatoire return a completed as follows

Return =	Pool	it -	- to	aospo	Mahon G	>81=
R\$ 8	6	6	6	4		
R8 7	4-	2		Manager Manage	and the second s	
Rg.,9	5	6	7	8		

To convert into minimization problem. Subtract all the elements in the table from the highest element, so that matrix becomes

r.P	1	2.	3	L	Supri
cathy In	2001	300	2	4	1000
city B	1001	6	4	3	7100
city a	3	2.	50td	Hool	900
Juik.	900	g us	500	400	26m

HERE'S ELEPTY & TOTAL Hermand Hence balanced TE

Aprily YALA To got The allocation.

HERE MO OF ALLBERTIONS Obtained & No of allocations 05 + (mm) 1) = (03+11-1) = 06.

HERIER HEMERIERREN BEGIN

Allet & to a least east eath so that it one GHEREN A CLASED LEBS

9	1	W.	3	113
	HHA	BULL	That I	
(at the bash	1	9.1	1	
(1)(2)	1001	Fig	111	1 6
		Marina P.	HAR L	um/
111/11/11	h	31	At the state of	

F 19084 1 900 KT 1 1100 44 लगाईकी महाहित्स समावता में सहित्स = 1 34 80 % Fy 16 8 9 1) =

I Wal Allucations phononical a era

populational of Cara (are 1) of Cara (bill 1) of Cara propulation of the Cara of the Cara

VIII 611 (MINI) >0

Leaning warn a appropria

line of the place of the ord

Tundling of kn

3. A Company has factories F, F2, F3 and F4 manufacturing the same product. production and raw material costs differ from factory to factory are given in the following table in the first two rows. The transportation costs from the factories to Sale depots S, S2, S3 are also given. The last columns in the table gives the sale price and the total requirement at each depot. In production capacity of each factory is given In the last row.

		1			
F,	F.	F3	Fy.	Sales price/	Requirement
15	18	14	13	Joseph	Doil
10	9	12	9		4 4
3	9	5	4	34	· 80
١	7	4	5	32	120
5	8	3	6	31	150
10	150	50	100		e <u>i i i i i i i i i i i i i i i i i i i</u>
	3 1 5	15 18 10 9 3 9 1 7 5 8	15 18 14 10 9 12 3 9 5 1 7 4 5 8 3	15 18 14 13 10 9 12 9 3 9 5 4 1 7 4 5 5 8 3 6	15 18 14 13 10 9 12 9 3 9 5 4 34 1 7 4 5 32 5 8 3 6 31

Determine the most profitable production and distribution Schedule and the Corresponding profit. The surplus production should be taken to yield Zero net profit.

Solution:

Hint. profit = Selling price - (prodution cost + Raw material with + Transportation with the Transportation with

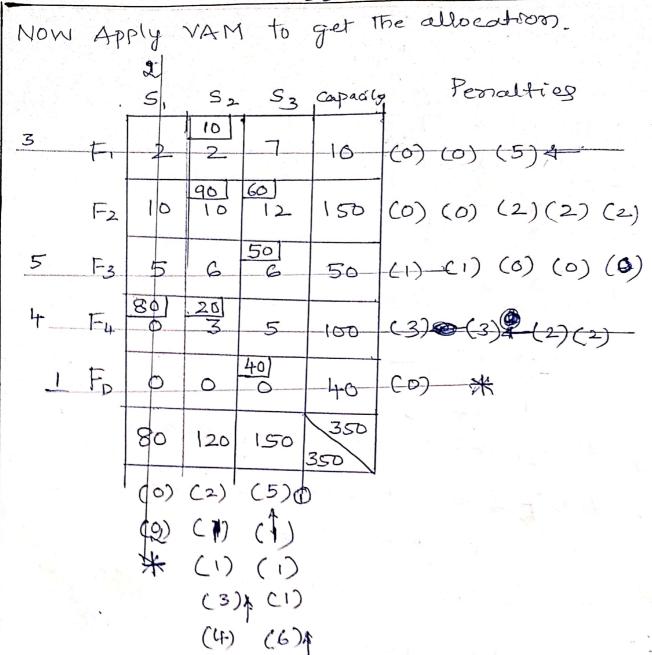
profit table			The Donner of the Contract of	The Same	Autoritation of the second of
	5,	34-(15+10+3)	34-(18+9+9)= -2	34-(14+42+5	34-(13+9+4)
	5,	32-(15+10+1)	32-(18+9+7)	32-(14+12+1	32-(13+9+5)=5
	S3	31-(15+10+5)	31-(18+9+8) = -4	31-(14+12+3)=2	31- (13+9+6)
l _o	The second section of the sect			and the second s	riterki (latin saga) inakusuma unaz semajan serindiri sajan senya jah se ih nisin se masar

It is a maximization problem, To convention of a orinionization problem, Subtract all into a orinionization problem, Subtract all the elements from the highest element in the cell, So that minimization table becomes (profit table) = [(Minimization table)

0 . 1	,		1.1			-	(Minh	origation	2) terpos)	
brobus	table)	-	Fa	F3	FY	·	FI	Fz	1-3.	F4	ī
	Si	G	-2	3	8	Si	2	10	5	0	-
	Sz	6	-2	2	5	-+ <u>S</u> ,	2	10	6	3	
	S			2	3	S3	7	12	6	5	

Rearrange the maltux

	A	()			1	
		S	52	s 3	Carpaciti	
merali	T.	2	8	%	10	
	Test 2	10	10.	12	150	
	-3	45	6	a 6	50	
	F4	Ø	30	8 5	100	
	Refinition	80	12-0	150		


Total capacity = 10+150+50+100 = 310 units

= 80+120+150 = 350 Umb

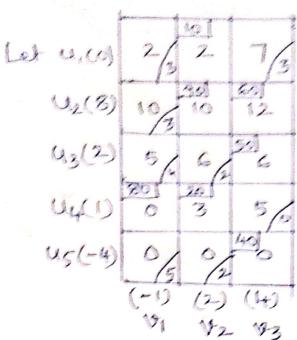
Excess repuirement

= 350-310 = 40 Unib

Introduce a desorary row with cost cell as zero.

Apply optionality test.

No: of allocations obtained = No: of allocations


T = (m+n-1) = (5+3-1) = 7

Hence eligible for optionality test.

Determine Cij = (ui+vj) for all occupied cells

Determine Cij-(ui+vj) for all uno Eccepied

Cells.

All cij-(vi+vj) >0 Hence Sol in oftimal.

profit = Max = 10x6 + 90x-2 + 60x-4 + 50x2 + 80x8 + 20x5

= 60-180-240+100+640+100

Profit = Max Z = 480 |-

4. A multiplant company has 3 manufacturing plants A, B & G and Two markets x and y. The product cost at A, B, C are Re 1500, Re 1600 Rs 1700 respectively. Solving price in X and y are 4400 and 4700 respectively. Demand in X and y are 3500 and 3600 pieces respectively. The transportation cost are as shown in The matrix. Built the mathematical model for this.

	From	1 ×	Y	copacity
Rs 1550	A	1000	1500	2.000
Ra 1600	В	2.000	3000	3000
R\$ 1700	C	1500	2500	14000

Solo, - We know profit = selling price - Transportations

For Ax profit = 4400 - 1000 - 1500 = 1900

At profit = 4700 = 1500 - 1500 = 1700

Intaky for Bx, By, Cx & Cy,

profit table become e

	From	7.	\	Capacily
The second secon	A	1900	17 00 P	3,009
Marin Committee of the	B	800	(60)	Zem
Complete Com	C	12.00	GARA	4000
Aprenion Sternbert Sternbert Sternbert	a fish way	3500	Zear	1100

Total demand = 4100

Total demand = 4100

Enrose departly

= 9000 = 7100 = 1900

Units

Tukendure a duamony

Total est pert

The remarkance of the experience in the Gallacian Transfer of the second of the second

Autograped & 74 + 702 × 1-3 = 2000 721 + 722 + 723 = 3000 スポープランドスコラニニング 7.11 + 7.21 + 7.31 = 3377 742 - 722 - 732 = 340 スパラナメンラースで Kinese Tip > The First To convert into minimization prototers, Subtract all the elements in the table from the highest element, so that material lessoness

ED	1	2	3	Lege	Supp
aty A	200]	800(2.	2	4	1000
city B	700	6	L.	3	7-00
city d	3	2.	504	0	950
Demid	900	800	500	400	2600 2600

Total supply = Total desnand Hence bolanced T.P.

Apply YAM to get The allocation.

Here No: of allocation obtained = No: of allocations seguised

05 = (m+n-1) = (03+4-1) = 06.

Hence degeneraces exists.

Allot & to a least cost cell so That it not form a closed loop.

Required = (m+n-1) = (03+04-1) = (06)

		2	3	4
	200.	800	6	
Let u, (O) A	2	2	2	4/3
$U_{2}(2)_{3}$	4	6/2	. 46	3/0
U3(-1) d	3/2	2/1	500	0
Noval Allerant	(2)	(2)	(2) V3	(1)

All cij-Cuituj)>0, Hence soln is aphind.
Tending G-100

Profit = 6x200+6x600

+ 700x4 +500x7

+ 400x8

= 1200 + 4800 + 2800 +3500

+3200 = Rg 15,500

NETWORK TECHNIQUES

PERT AND CPM

Introduction: Nowadays the term

Network technique is very extensively used. in a the field of project planning and control.

The Correlated date for a project is most Often a part of the contract. Heavy penalties are imposed for not completing the project within contracted time.

The project of national importance, Such

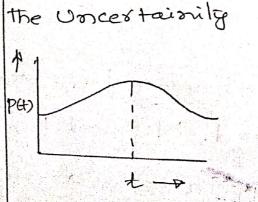
as (i) irrigation projects (is) power plants (ii) Construction of dason (iv) Fertilizer plants etc.

have a large impact on mational economy. The delay in completion of these projects mais affect the production and industrilization of a very large region and may in turn the Clonorry of the nation as a whole and hence the early Completion of Such project is of impostance.

Network planning techniques have been developed to oneel this need. Network Technique represent a Systematic approach to developing

METWORK TECHNONES

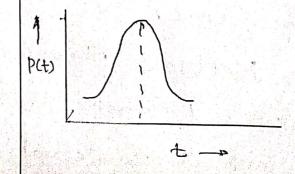
PERTAND CRIM


information for decision making, proper information techniques help to minimize the planning techniques help to minimize the change of Scheduled Slippage, cost over recommunity and provide any easy method to take approprial cond provide any easy method to take approprial corrective measures at the propertions to achieve the Company objective.

Difference between PERT AND CPM

PERT Approach is Even based oriented So it is builtup of event oriented diagram

2. PERT adopts a probabalistic approach towards the problem


3. Dispersion of the curve is more and hence more is in the Uncertainily

CPM approach is activity based oriented, so it is built up of activity oriented diagram.

2. CPM adopts a deterministic approach towards the problem.

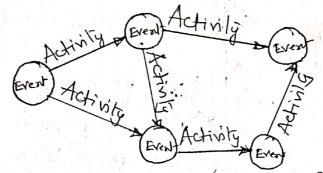
3. Dispersion of the culto is less and hence more in the certainily.

- 4. In PERT, there may 4, not be any relation between the cost and the execution time of and activity, in PERT costs are not related to time.
- 5. PERT is used a more in larger project Such as (i) R and D projects (ii) product development and other similar projects involving factor of uncertainily
- 6. The use of during 6
 activity is not required
 for representing
 the proper sequence
 -ng

In CPM, there may be direct relation between the cost and the execution time of an activity. i.e CPM costs are related to time.

- CPM is used more in somaller projects fuchas
 (i) Constructional activities
 (ii) Maintenance overhauly repair
 iii) production control,
- iii) production control, planning & & cheduling ove done through CPM

The use of durning activity is necessary.


CPM AND PERT NETWORKS!

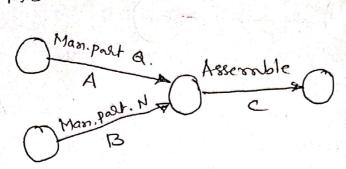
There are two balonc elements in a networkplan. These alu the activities and The event. The activity stands for time Consuming part of a project. It represents the job. The event also called a made, on the otherend

is either the beginning or end of the job. The activity are denoted by arrows and the events by circles or rectangles. When all activities and events in a project are connected logically and Septembally, they form a network, Such a network is a basic document network, Such a network is a basic document in a network based management system.

Fig. shows the events are connected by

activities.

Some jobs can be taken up concernently, In some cases a job cannot be undertaken Until another job is over.

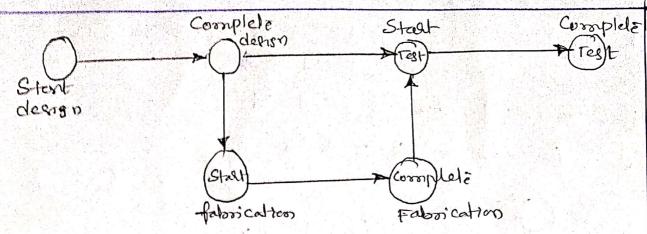

For ex: If concrete Pouring repaires that the foundation digging is complete then jobs the foundation digging will have to precede representing digging will have to precede job B. which represent the pouring of

Concrete

Fig. below shows represents this

ODig foundation Pour Concrete 0

Fig. below. might represent A-manufacturing part Q B-vorancefacturing part N C-Assemble Q and N.



In a network based management system, the stress could be laid either on the event or on the activity. One of the difference between PERT and CPM. network is that PERT - Event oriented CPM - Activity Oriented.

CPM Analysis is activity ordented as shown above.

PERT (Program Evaluation and Review Technique)
is event oriented. Fig below gives an
example of a network that is event oriented

Here the interest is focused upon the Start or Completion of events rather than on the activities theorielves. The activities that takes place between the events are not specified.

PERT NETWORK is a event based.

Event may be defined

(i) It must indicate a note worthing of

Significant point in the project.

- (ii) It is a start or Completion of a job.
- (i) It does not consume lime or hesources.

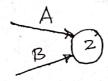
Examples of what an event and what it is not are:

Foundation digging started: in a pert event Foundation is being duq: is not a perternit Assemble parts A and B: in not a perternit Electrical dengen Completed: in a perternit. Event or Events That isommediately come before another event without any interviening events are called predecessor event to That event.

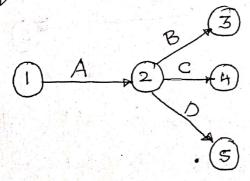
Event or Events that immorediately follows another event without any interviewing events are called Successors event to that event.

Predcessors

Event (1)


Fuccessors event

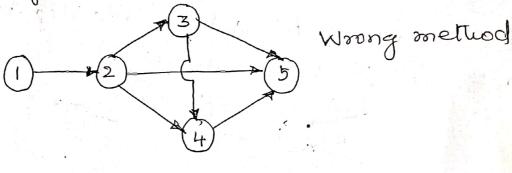
event (1)

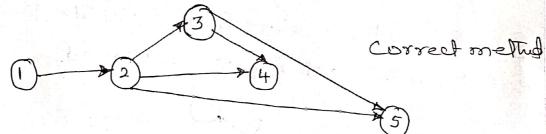

HINTS FOR DRAWING NETWORK.

The general rules of Network Construction are

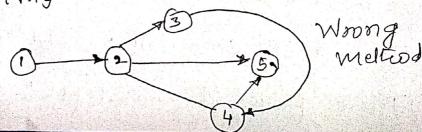
D An event is achieved only when all the activities leading into it are completed.

2) No activity can begin till The preceding event of the activity is achieved.

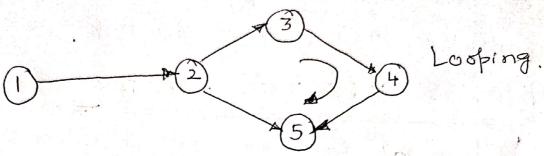

- 3) All the restorients and interdependencies must be shown in the network.
- (4) No activity or event should be shown twice.
- 5) Time flows from left to night.


6) To show the soultiple dependency of activity levers, durnony activity is used.

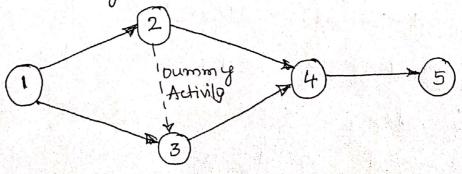
PRECAUTIONS!


In addition to The general rules Bubled above, the following precautions onust be taken while drawing a network.

1) Arrows representing activities should not usually cross each other.



2) Activities should usually be represented by straight arrows only & not by curved arrows. For this events should be so arranged arrows. Listensing logical sequence) that the activity do not intersect


3) The loop formation must be avoided. Thus may occur due to the duplication of events members or repetition of a particular activity or inaccurate collection of date. i.e. it occurs in a complicated network.

4) Durnmy or Redundant Activity

Soone tirreg an event i has occurred, although unless the other event i has occurred, although no specific job/task occurs between them.

In such a case, a during arrow is inserted. The function of which is simply to indicate the sequence of events. During activity does not consume any time or resources. It is represented by broken or dotted arrows.

Network Showing The durning activity 2-3

Durany activities serves the following purposes.

- (i) To resultain logoe in the network diopsen
- (i) To show the relationships between every i.e when an activity has to be completed before the other can be started

NUMBERING, THE EVENTS !.

A logical septence must be reflected by event numbers in a network. This is achieved by making use of D.R. FUIKERSON RULE, which congists of the

following steps.

(i) An initial events is one which has arrows coming out of it and more entering it. In any network, There will be one Luch event naonber it as 1.

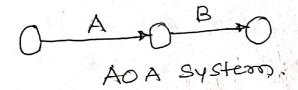
(ii) Delete all assows esonesging possos events Juis will create atteast one mose initial events (il) Nurober these new initial events as 2,3-.

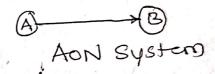
(11) Delete all esonerging foroson these numbered events which will create new initial event.

- (V) Follow step (ii)
- (VI) Continue until the last event, which has no arrows ernerging from it is obtained.

In large networks, where modification may have to be as the project progress, freedom must be there to add an member of events without causing inconsistency or loops. Juis is achieved by Skip Numbering In this, evely tenth mumber is used for the initial event Numbering. Any event added later may be alonghed a member, which lies between the number of predecests.

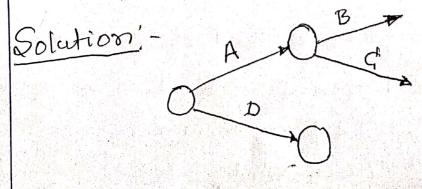
NETWORK REPRESENTATION

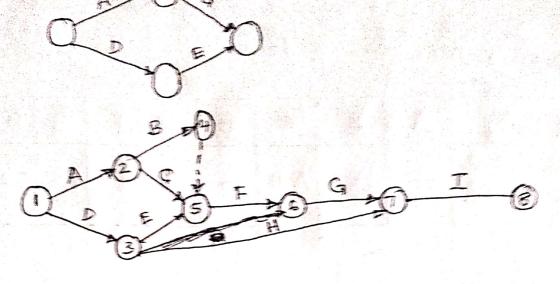

There are two systems


- () AOA System (Activity on Arrow System)
- 2) AON System (Activity on Node system)

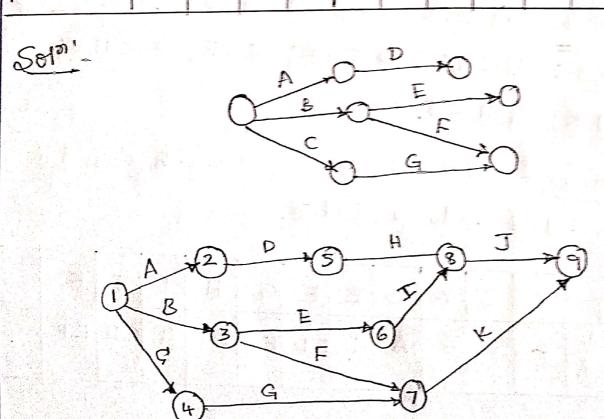
AOA SYSTERM!. This repetuod of representation is called Arrow diagram somethod, Here the activity is represented by an arrow starting. Activity (2) end

So the tail of the activity represent the start and head represents the finish activity.

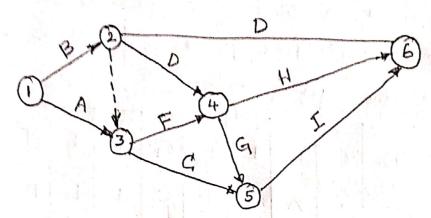

AON System: - In This method, activities are represented by the circles of modes and armores shows only the dependency and armores shows only the dependency relationship between the activity modes. In Yelationship between the activities are AON system demony activities are eliminated



Ex.1. Construct a network for the project whose activities and their precedence relation - Ships are as given below:


Activities	A	В	C	D		F	G	H	I
Immediala predecess		A	A	-	D	B,c,e	F	Ω	G,#

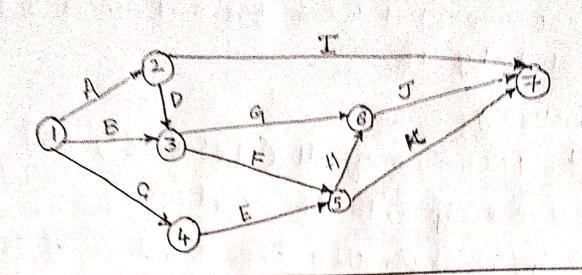
Exil: Construct a network for each of the projects, whose activities and Their precedence relationships are given below.


Activity	Α	B	C	D	E	F	G	#1			K
predcesor.	-		_	A	В	B	С	D	E	11,1	F, G

Ex. No.: s: construct the metropak for the following and occarbering the events using D.R. Fulkerison's rule:

Activity	۸	В	C	Б,		F	G	-	1
Immediale Predecessor			A.B	B,	G	А,В	F.D	F, D	CIG

Ensi,-


Ex.No: 4: A,B, C can -Start firmultaneously

A < D, I; B < G, F; D < G, F; C < E; E < H, K;

F<H,K; G,H<J.

Solution: The above constraints can be formatted into a table.

Activity A) L	5 C	- D	E	F	G	H	I	7	K	
Immediate Predeceror			A	Ċ,	B,D	B,D	E,F	A	G, H	E,F	15.00

CRITICAL PATH !

It is the longest path in the meterook form the starting event to the end event, and it takes the maximum of time is called Coitical takes the maximum of time is called Coitical path and the activities on the Coitical path are called critical activities. The procedula to identifying the critical path both the PERT and CPM network is Similar. The critical path calculation consist of two phases, the forward pass Computations & Backward pass Computation.

FORWARD PASS COMPUTATIONS!

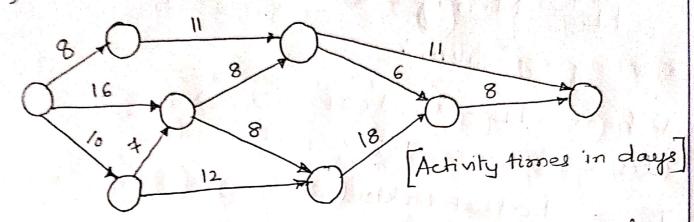
Calculation begin at The initial event and move towards the end event. Initial event is also goed Zero time and then proceeding event is also goed Zero time and then proceeding to the next event in Sequence, the time at which That event is expected to occur at the earliest is colculated. This is called

Earliest expected time for that event and is denoted by TE.

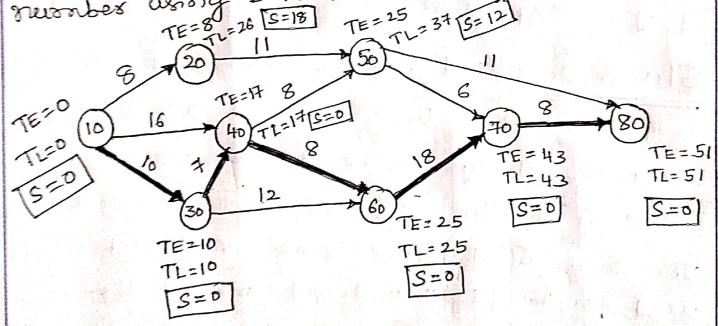
Generalizing

TE' = Maximum of all (TE' + Lei) box all ij leading into the event.

Where TEI - Earliest expected lime of the Successod event.


TE - Eastiest expected time of the predecessor event.

BACKWARD PASS COMPUTATION


Calculations start from The last mode of the project and proceeds towards the start node. To Start the Calculations, the Live of Occurance for the last mode is decided. This is the time at which the project soult be completed. Jus in called "contractual obligation time and is denoted by Ts. If not Known, the contractual obligation -v time is taken to be equal to the earliestexpected time for the end point. The objective of the backward pass" is to calculate the latest allowable occurance time, the time

at which a pasticular event must occur at the carriest. This is denoted by Th. Generalizing TL'= Miss of all [TL'-te's] for all ij essesging both i vohere Ti = Latest allowable occulance time for event i Ti) = Latest allowable occulance time for eventj. teij = expected time for activity ij. Slack Ox Float. Slack and float both refer to the associat of time by which a palticular event or activity can be delayed without affecting the time Schedule of the network. The terror Slack refers to the event and is used in the PERT network and the term Float refers to the activity and is used in CPM network The path forming an Unbroken chain of critical activities from stast event to the end event is called the Critical path. On the critical path, all event have zero slacks. In a network the critical path is shown by thick lines

EXNO.1. Calculate the slacks for the events and critical path for the following network, and the calculation in tabular form as well as on the network itself.

Solution: - The event of the network are first number using D.R. Fulkerson's ville,

The critical path

10-30-40-60-70-80

ACHI Pedecasi	Successor event (J)	ted	To the second	The state of the s	TE3	TU	Slack S
10	20	. ∤ 8	0	8	18	26	118
1011	30,	10	0	10	0/	10	ō
10	40	16)	0,,	16	I,	17	
20	50	II.	8	19	26	37	18
30	40	h	10	17	10	17	ō
30	60	12	10	22	13	25	3
40	50	8	17	12.5	129	37	12
40	60	8	M	25	W-17	25	Ō,
50	70	6	25	31	37	43	12
50	80	111	25	36	40	51	15
60	70	18	25	43	25	43	0
70	80	8	43	5 P	43	51	0
						I F	no no politico
	sitical P		7 - 0	1-0 -	(80		

-				- 20) (
1	X.N0	12 +	-iond -th		-	path	for.	the
0.3	follow	tang "	netwo	-42	rass	Providence		
are a		TE=6	1=65=0,	TE=15	3 (3=2)	十三二	15 S=1 = 25	$\mathbf{D}_{\mathbf{p}}^{(i)}$, i , i
TE	=0 .	20		40-	8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0	3 TE=40
:	(10)		3 6	12			8 TE=3	7 80
	=0	8	1			12	TL= 3.	3 TL= 4 C
			30	10	50)	5=0	S=0)
			TE=9		TE	A	161	
*	•		S=0	Jau	TL=	= 0	1	
J	he c	intical	path:	10-2			-60-	70-80
1	1	ity i-j	Activity	1	H	LOT	A.	Slack
Pr	edecusor	suceror event j	duhation teij	EST, TEi	E F.T.	LST.	LET Tij	TLI-TEI
	10	20	116	0.0	6	0	6	0
	10	30	8	10	8		9	2.5
	20	30	3 1	6	9	6	9-	01
ji.	20	40	8	6	14	9	17	3
	30	40	6	9	15	1	17	2.1
	30	50	010	Pa 1	119	· [9]	19	00
*	30	60	12:	9	21	13	25	1 4
	40	60	8	15	23	17	25	2
	50	60	16	.19	25	19	25	Ō
	50	70	1.2	19	31	2.1	33	2
Call of 1	60	70	8	25	33	25	33	Q
***	70	80	7	33	. 40	33	40	0
		F.F. seeden		1			<u> </u>	

Float: There are three types of floats
Total float: Tei

It is the maximum time available for the job and the actual time it takes.

Total float for inj = (Thi-TEi) - teij

Total float for inj = (Thi-Tei) - Tei

[Thi-TEI]

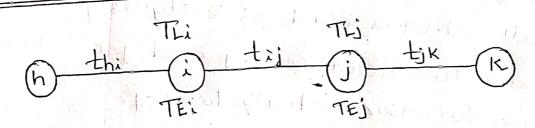
This is equal to Latest stort lione for the activity onionus, the earliest stort time.

FREE FLOAT! - This is based on the possibility that all events occur at their earliest times, i.e. all activities start as early as possible. consider two activities i-j and j-k, where j-k is successor activity to i-j.

Let the earliest occulance time for event i to be TE' and for event if to be TEj.

This means that earliest person possible steat time for activity i-j is Tei and too activity j-k is Tej. Let the devoation for activity p-j be teis.

Assume that i-j start as TE' and takes teid unit of time and that the next activily J-K Cannot Start, because its earliest Possible time TE; in greater Man (Tei+teij)


TEj- (TEi+tei) is called free float Then for the activity i-j. i.e

Free Float for i-j = TEj - (TEi+ tei)

We can restate it as follows.

The free float for activity (i-j) is the difference between its earliest finish time and earliest Start time for its successor activity.

Independent Float:

Let i-j be the activity under interest and h-i and j-k respectively be its predecessor and Successor activities. Let the predecess job h-i finish at its latest possible moone out Thi and Successor job J-K Start at its carliest possible mornent Tej. The activity i.j can take up any duration this to (TEj-TLi) without

in anyway affecting network. The difference between (TEj-Tri) and til is called The Independent float. i.e Independent Float = (TEJ-Thi) - tij Ex! Find The Critical path for The following network and also find its floats ine Total float, Free Float and Independent float. TE TI=4 S=0 TE=10 12 S=2 TE = 22 | 3=0 TE=12 TE=32 TE= 22 TL= 22 S=0 S20 TE=12 TL=14 S=2 Critical path: 11-2-4-6-7-8-9. P. 18-140 al his to per

Tak	sul	ias Fos	. Ja		From	France.				TEj-(TEJ+ti)	(TEj-TLi)-E)
A preder Event	COSTOR	Sucerson event	t _v i	TEX	TEj	π	TLj	Slack Tli-Tei	To tal Floor	FreeFloat FF	Independent Float IF
1		2	4	0.7	4	0	4		O	ď	0
1		チ	12	0	12	2	14	2	2 2	0	O
1		164	:10	0	. 10	2	12	2	2	2	2
2		4	8	4	12	14/1	12	$\left\langle \begin{array}{c} \bullet \\ \bullet \end{array} \right\rangle$. O	0	0
2-		5	6	4	+10	16	12	2 -	2.	٥	0
3		, G	8	12	20	14/	22	(12, 7)	2	2	
. 4		6	10	12	2.2	/12	722	0	0	0	
5		7 T	10	10	20 (12	2.2	24	2_	2	0
6			0	22	22	2.2	22	()-	0	0	0
6		8	8	22	30	24	32	2 -2	2		
7		8	10	22	32	22	32/	0	Ø	2	2 0
8		9	6.	32	38	32	38	0	0	0	

itical path 1-2-4-6-7-8-9

			- 25 -				
Ex. No. 2:	Find	the	Coitica) path	fosso	The f	ollowing
network	and	ù5 ,	floats				
A project	Sched	ساد ا	has the	e follo	owing	chara	cheristica
Activily	_ 1-/2,	1-3	2-4	3-4	3-5	4-9	5 - G
Time (days)	4	Ì	1	1	6	5	4]
Activity	5- T	6-8	7-8	8-10	9-10	1/	
Time (daips	8	Í ^Ú	(-12 C	ל	7		
(1) CO2122	uc a	net	-noork	di'ag	ram	1.00	
	L 4	000	L'est en	cont t	isone as	nd late	st exception
		H ~ C	notical	paus c	Y 0 1-1 1-		()
(IV) Comp	+ +	stal,	free f	loat, 3	Indepe	odeol	float
(In) Cossel	Me -	\ \^\\\				2 4	
for each	, au	d					i-et
CA Visan		_1			<u> </u>		
Solution.	TE-4 [9	=5]		TE=10 TL=1S	<u>5=5</u>]		
	2 TL=9		5	(9)—			TE: 22
P. CIV		TE:5	6	TE	11 L= 16 5=5		
TE=0(1)	1	4)(5)	2	4 6		/	
S=0 11 /11	(3)		5		9. 3	8) TE=17	
	E=1		TE=7	8		TL=17	
· ·	Z=1 S=0		TL=7	ĺ) 01 E	S=0	<u>)</u>
contical po			<u>المناب</u>		TE=15 TE=15		
1-3-5		3 - 1.0)		s=0]		

11	Normal	Earl	iest	Lad	est	Total	Independent	Free Floal
Activity	-timetès	Start	Firush	Start	Firush TLj	Floating (Tu-TE)	Float TEj-(TLi+ti)	TEj- (TEi+te)
1-2	- 4	0	4	5	9	5	0	0
1-3		0		0		0	0	G
2-4	(a)	4	5	9	1.0	-5	0 (-ve)	0
3-4	1		2.	٩	10	8	3	3
3-5	6	1	7	1	7	0 -	٥	0
4-9	5	5	10	10	15	5	0 (%)	0
15-6	4	٦	Ir	12	16	_5	0 (3)	0
5-7	8	7\	15	77	15	<u>o</u>	0	0
6-8-	L. H.	11(2	12	16	17	5	0	5
7-8	2	15	17	15	17	0.	0	0
8-10	5	-17	22	17	- 22	0	0	o T
- 9-10	7	10	17	15	22	5	. 0	5

TIME ESTIMATES

PERT Stands for programme (or project or performance) evaluation and Review Techniques, which can be applied to any field repulsing

- plansing
- Controlled &
- integrated | Scheduled work ettosts to accomplish established goals.

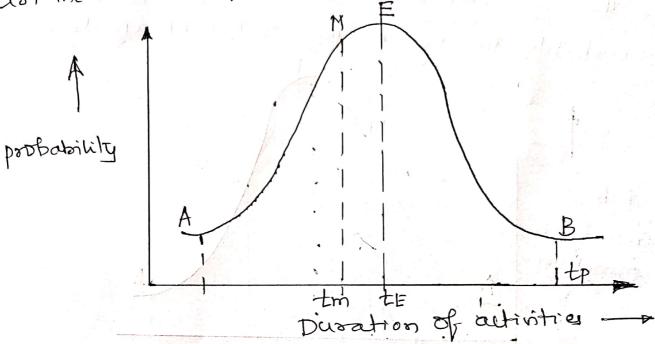
The PERT System uses a metwork deapseum Corrests of events, which must be established to reach project activities. The commencement or completion of an activity is called an event. It indicates a point in time and does not repuise any resources.

Time is the most essential basic valuable in PERT. It is assumed that there is always some factor of uncertainity in estimating Lione. (& soone other measure of performances) of any operation, which had not been done before the time required to complete any job

In PERT, We try to find out the best estimate of livre using appropriate statistical orethod. PERT also provides the confidence lisaits for the

expected project duration.

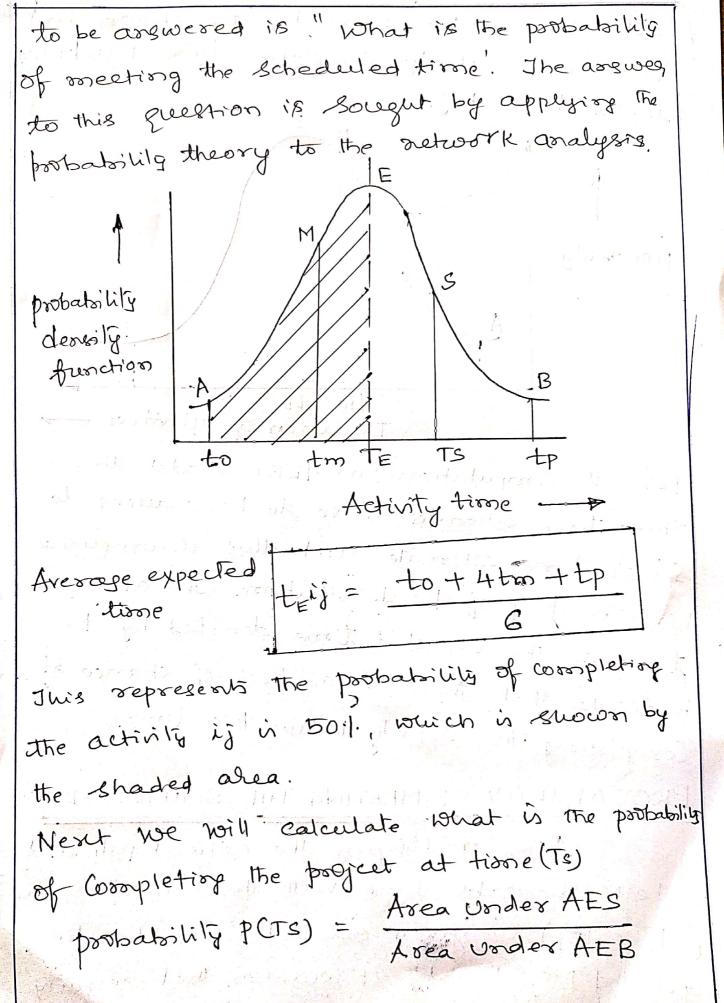
Thus to Take the Uncertainity into account, PERT planners, make three kinds of time. estivorales.


- 1) Optionistictione (to) It is the shortest possible time to Coroplete the activity if all goes
- 2) Most likely time (tm) Most probable time.

The time which most often is required, if the activity is repealed a member of times Most likely time is the time that, in the soind of the estimater, represents the time the activity voould most often repaire if normal Corditions prevail.

tro lies between the Optionistic time and persionietic tione estimates.

3) Pessionistic time (tp)! It is the longer tirol for the execution of any activity under adverse conditions, excluding the acts of nature Such as labour strikes or unrests etc. This time is most difficult to estimate.


The three time estimates are shown in relation to activity Completion time distribution in the below Fig.

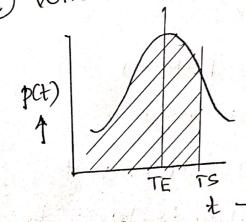
For all Computations in PERT model, these three time estimates have to be reduced to single time estimate and this accomplished with the help of B-distribution. The average with the help of B-distribution. The average time or the expected time denoted by te time or that there is a 50-1 of chance of indicates that there is a 50-1 of chance of indicates that there activity within this time.

PROBABILITY OF MEETING THE SCHEDULED DATES

After identifying the contical path and latest allowable time with the help of assumption (TLi = TEi) or given Scheduled Completion time, for the project, the next question that revealing

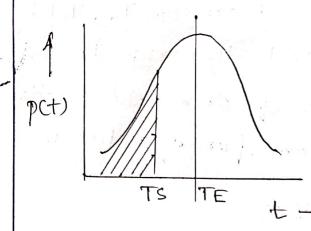
So p(s) depends upon the Location. of Ts. Taking TE as a reference point, and distance TE, Ts Can be expressed in terons of standard deviation The value of the Std. deviation for a network is calculated.

Std. deviation for network


T = V Sum of valuance along the contical path

Since the Std. deviation for a normal curve in 1. the or calculated above is used as a scale factor for calculating the morosal deviate.

Normal deviation Z = TS-TE probability factor


The probability factor (Z) can be tre, - re of zero

(1) vohen Z -+ +ve (Ts to the origin of TE)

the change of completing The project in time ale soble than 50-1.

When Z -> - ve (T's to the left of TE)

The charge of Coorpleting the project in time is less than 50%.

When Z- > Zero

Zero CTs Coincide with TE)

PCt)
TE t-

The chance of Completion the project in time is 50%.

Steps for finding the probability of oneeting

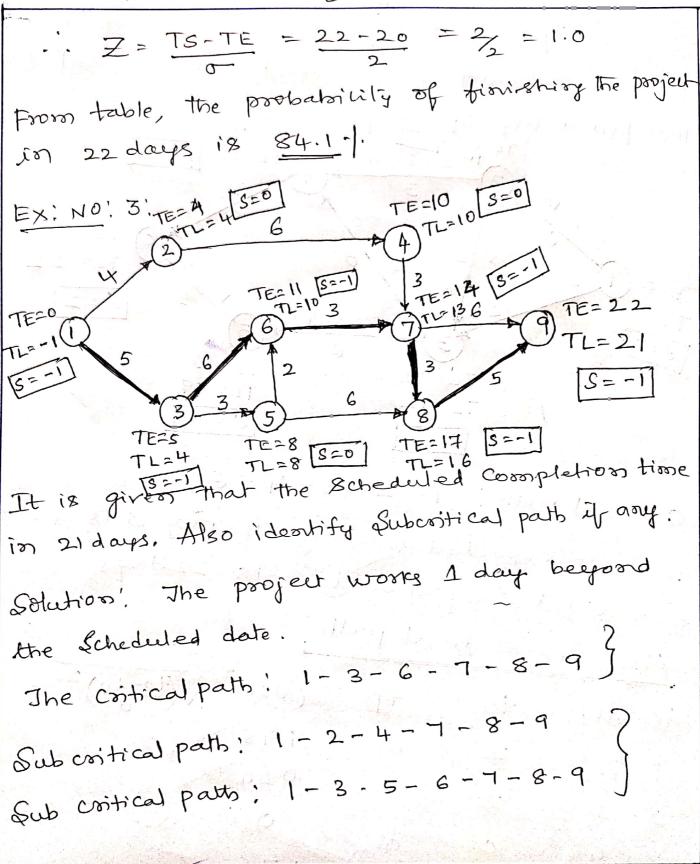
the Scheduled time of Completion.

- (2) Ts is Known Given in the porblem
- (3) TE is known for the last event
- (4) Find the time distance (TS-TE) and expressed in terms of probability factor Z by the relation $Z = \frac{TS-TE}{T}$

5) Find 1. probability W. 8. t the moronal deviale foroson the table. problems: -. The three time estimates are given for the activities. Calculate the critical path & also @ what is the probability of completion The project in 12 days (b) what is the probability of completing The project @ what is the probability of completing the project in 10 days. First find out teil 2 to +4tront Solution .. TIS6 5=0 TE=0 TL=2 TE=5 TL= 6 Contical path: 1-2-3-5-6

$$\nabla = \sqrt{\left(\frac{3-1}{6}\right)^2 + \left(\frac{7-1}{6}\right)^2 + \left(\frac{9-1}{6}\right)^2 + \left(\frac{4-2}{6}\right)^2}$$

Calculate the normal deviate Z.


$$Ts = 12 \text{ days}$$

$$Z = \frac{Ts - TE}{1.73} = \frac{12 - 12}{1.73} = 0$$

(b) probability of completing the project in 14 days

$$Z = \frac{Ts-TE}{\sigma} = \frac{14-12}{1.73} = \frac{2}{1.73} = 1.156 = 1.1$$

$$Z = \frac{Ts - TE}{T} = \frac{10 - 12}{1.73} = -1.156$$

(pct) = 13.6%. For the network shown in Fig. below. calculate Completion in 22 days. TE = 10 TL= 12 TE =16 TEZIO TL 3/12 expected time for the project is 20 days 22 days Scheduled Completion time is Along the critical path! (vij) = (tp-to) to Activity 10 6 1.78 14 4-6 ". To for the network = $\sqrt{(\pi i)^2} = \sqrt{4} = 2$.

MODULE-5 GAMETHEORY

A game theory is a decision theory applicable to competative Situations. Competative Bituations arrives frequently in the field of economic and smilitary operations.

GAME: The Competative situation is called a game if (i) there is a finite number of participants Called players

(ii) A finite number of possible course of action. ile (Strategies available to each players)

(iii) If the play of the game regult, when each player as choosen a course of action (iv) Every play is associated with an outcome (generally money). it determines set of

garre one to each player.

(V) A loss in consider as negative game. When n' players are involved in a game, then it is a n-person game. A game in which the gain of one player and loss of another player is called Zero-Burn game, i.e in a Jero-Sum game, the algebraic sum of gain of all the player after a game is zero. When two players are involved, the game is called two-person zero Sum game or rectangular game. In this the resulting gain is sepresented in the form of pay-oft matrix. The pay-off matrix shows how the

payment should be made at the end of the play.

Definition: -

- i) Strategy: A decision rule by which the player determine his course of action is called a Strategy
- Generally two types of Strategies are available.

 (i) pure strategy. If a player knows exactly what

 the other player is going to do. A deterministic situation
 is obtained and the objective function is to maximize
 the expected gain. pure Strategy in a decision rule always
 to select a particular course of action.
- b) Mixed Strategy! If the player is guering vowers activity is to be Belected by the other. A probabilistic activity is to be Belected by the other. A probabilistic Situation is obtained and the objective function is strategy in a selection among pure Strategy with a fixed probability.

TWO-Person Zero Surs garne or Rectangular game.

^{*} Two players participales

^{*} Each player has certain no! of strategies available

^{*} Each Strategy result in a pay-off or out come

Ine total pay of the two player at the end of the play is 3est.

pay-off Matrix! It is the outcome of playing the game. The pay-off matrix is a table showing the amount received by the player made at the the hand of the table and the payment is made by the player is made by the player is made by the player is at the top of the table.

MAXIMIN AND MINIMAX PRINCIPLE

MAXIMIN PRINCIPLE;

For ex:- player B

In this example, the player A

will get atleast -3, -1 and I

will get atleast -3, -1 and I

will get atleast -3, -1 and I

leaver A 2 -3 when he play the Shrategies

I, 2 and 3 respectively.

I 2 -1 1, 2 and 3 respectively.

Jhese are the noorst gearn of player A. out of these maximum is () which correspond to the

Strategy, in this guaranted gain is maximum.

MINIMAX PRINCIPLE: From player B point of riew the maximum bosses are to be I and 3, when he use the strategies 4 and 5. The player B is interested use the strategies 4 and 5. The player B is interested to minimum of these to minimum of these losses is I yourch correspond to Strategy 4 of the player B. Thus according to minimum principle, the player B should use strategy 4 by which he assure that he will not loose more than one. The Value of the game is I. Some times the maximin is called

Here Maximin = Minimax = 0

Hence saddle point exists.

... Saddle point in (2,5) and

in zero. Hence it is a fair game.

(ii) Solve the game vohose pay-off matrix is given

B₁ B₂ B₃ B₄

A₁ -5 2 0 7 -5

player A

A₂ 5 6 4 8 4 Maximin

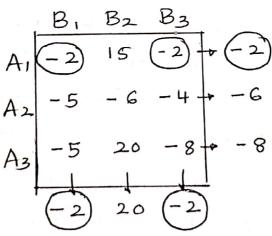
A₃ 4 0 2 -3 -3

5 6 4 8 Here Maxim

MINIMAX

4= 4

Here MaxIMIN = MINIMAX 4= 4 Hence saddle point


A2B3 is a saddle point and value of the game = 4

(iie) Solve the garne whose pay-off matrix is given

below:

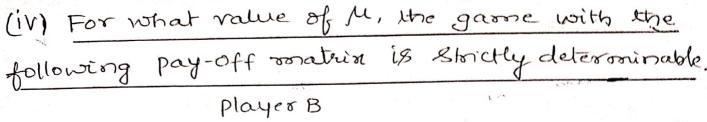
PlayerB

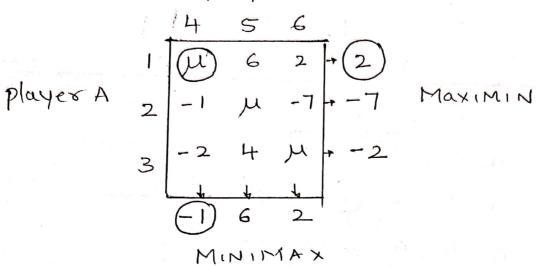
player A

MaxIMIN

(First take
Minimum value
and ont of this
take Maximum
value)

MINIMAX


(First take Maximum value and out of this take ordinionum value)

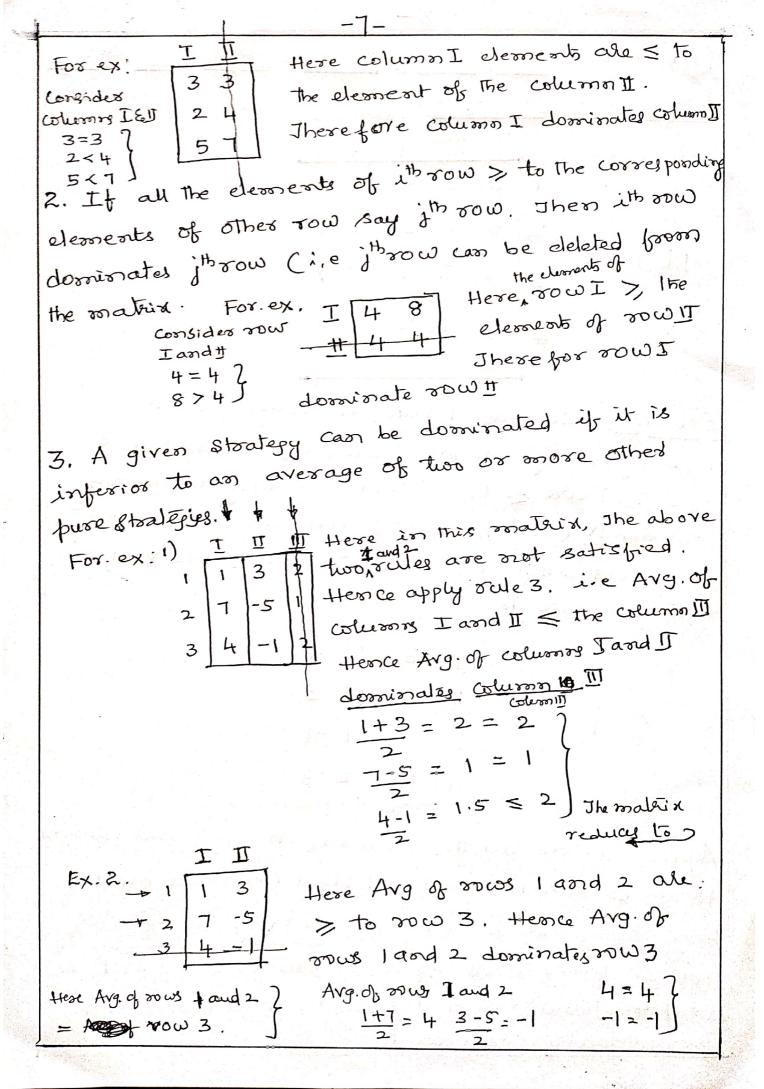

MAXIMIN = MINIMAX

-2=-2

Hence Saddle Point exis 6.

Saddle point: (A, B,) and (A, B3) and value g, game = -2

M lies betweeny -1 ≤ M ≤ 2


MIXED STRATEGY PROBLEM BY USING

DOMINANCE PRINCIPLE:-

DOMINANCE: When There is no saddle point, the pure Strategy cannot be used and mixed strategy will have too restore, when pure Strategy are not available (ie Maximin = Minimax). The next step is to eliminate certain strategy by Dominance.

GENERAL RULES OF DOMINANCE

1. If all the element of the column say (ith column) are \leq the corresponding element of the other column say (jth column). Then ith column dominates jth column (i, e, jth column can be deleted from the matrin)

problem 1: Solve the following game by wring dominance principle; player B

		I	$\overline{\mathcal{I}}$	\overline{m}	IV	N.
	1	3	5	4	1 0	6
	2	5	6	3	4	8
player A	3	8	٦	9	8	+
	4	4	2	8	5	3

Solution! - Consoder I rule, ie column wise,
Here by seeing columns, Column II elements (ie
5, 6, 7,2) are < to the corresponding elements
Columns IV (ie, 9,7,8,5) and Column IV (i. 6,8,7,3)
Hence Column II dominates Column IV and Y. Hence
matrix reduces to player B
T. II III

Player'A 3 8 7 9

Again observe all the elements in rows and odumns Here on rule 1 is not satisfied (i.e. Columnwise) Hence apply rule 2 (i.e now wise). By seeing rows, row 3 elements are > to the elements rows 1, 2 and 4. Hence nature reduces to

Here in the reduced matrix column I element 7 is < to the element of column I and II (ie 8 and 9). Hence Column II dorninates column I and II. Hence onathin reduces to IXI and the value of the Hence onathin reduces to IXI and the value of the garne is 7 and Saddle A 3 [7] point is (3, II).

* Note: - By applying dominance rule, it is not always reduces to IXI. In maximum majority it is reduced to 2x2 matrix. When it is reduced to 2x2 matrix. When it is reduced to 2x2 matrix. When it is reduced to 2x2 matrix.

then we can apply either Arithmatic method or Algebraic method to find the value of the game.

TMETHOD! Arithmatic method for 2x2 game.

Step 1! Subtract the two digits in column I and
Write Thern Under Column 2, ignoring the sign.

Step 2! - Subtract the two digits in column 2 and
Write them under column 1, ignoring the sign.

Write them under column 1, ignoring the sign.

Step 3: Repeat The above Steps for rows also. There values are Called oddments. These frepresents the trepresents the frequency with which the players uses their course of action (ie Strategy).

For ex! . In a game of matching coins with two players, player A wins Rs 2 if there are two heady, win nothing, if there are two tails and looses RE. I When there are one head and one tail. Determine the pay of soratrix, the best strategy for each player and the value of the garne for players A.

In this problers, Both players have two strategies Head and Tail. Therefore it is a Player B Before applying Arithmatic 2×2 rorabix.

J TO Ally Y

Maximan

player A playerB

sorethod bisst check whether it contain Scedollepoint. It those is a saddlepoint, We get a value of the gasse other wise you apply Asithosatic solling

playerA

MaxIMIN + MINIMAX Hence no saddle point.

MINIMAX Then by applying Arithonatic method

addment of A *2-(-1) = 3

When B was Hstaday

 $V = \frac{2 \times 1 + -1 \times 3}{1 + 3}$

Note

By wring A's or Bs oddonent-find the value of The game

support By using As odd one out When B way H strategy

Value of the Game = V = $\frac{2\times1+-1\times3}{1+7} = -\frac{1}{4}$

이 선생님은 경에 남은 사람이 있다는 나무를 받는데 되는데 그리고 있다. 그리고 그는 그리고 있는데 그리고 있는데 그리고 있다면 그리고 있다면 되었다. 그렇게 되었다.
<u>or</u>
By using A's odd ment when B uses T Stralegy.
$V = -1 \times 1 + 0 \times 3$
$V = -\frac{1}{4}$ $V = -\frac{1}{1+3}$
OR V=-/4
By using B's odd ment when A uses It Strategy
$V = \frac{2 \times 1 + -1 \times 3}{1 + 3}$ As+H $\begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$
V= -4 OR A used T Strategy
By wing B's odd ment when A wes T Stralegy
$V = \frac{-1 \times 1 + 0 \times 3}{1 + 3}$ As $T = \begin{bmatrix} -1 & 0 \\ 1 & 3 \end{bmatrix}$
1+3
V = -14 [Note: use any one oddments
to find value of the game.]
The complete Solution in player A uses H 25-1. (1/4)
of the time and T 75% (34) of the lime, and the
player B uses H 25-1. (1/4) and T 75-1. (3/4) of the
time and the value of the Garne in -1/4
Note; ve value indicate player B is winning
tre value indicate player A is winning

problem 4: A and B play a game in which each has 3 coins asp, alop, alop, Each select a coin without the knowledge of the other choice. If the sum of the coins is an odd amount A wins B's coin. If the sum is even, B wins A's win. Find the best If the sum is even, B wins A's win. Find the best Strategy for each player and value of the game to

player A.	pl	ayer B		
Solution!	a SP	alop	a20P	
a5p	-5	10	20	
player A alop	5	-10	-10	
a 20 P	5-	20	20	
	, 5 1 - 1			

Note: Take 1st cell

SP+ SP = 10P

Even

B win

(-Ve value
indicate B win
B win A coin)

Take (1,2)

cell asp + a 10P

= a15P

odd

A wing B coing

Apply Dorninance Rule! -

Row 2 dominate Row 3

and column 2 dominate column 3

Hence materix reduces to Apply maximin & minimux
a5p.a10p
principle
player A a10p 5 -10-10

-5 # 5

Hence no saddle point.

Then by applying Asithmatic method

asp -5 10 15 -10 15 (1gnote size) 1530 - 1/2

A alop 5 -10 15 (1gnote size) 1530 - 1/2

Oddraeat of B 20 10

(ignote-vesya)

20 10

30 30.

By using A's oddsnest when B uses asp strategy

Then Value of the game $V = \frac{-5 \times 15 + 5 \times 15}{15 + 15}$ V = 0

The complete solution is

Optimal Strategy for A (5, 5, 0) [Here 3rd sow &
Optimal Strategy for B (3, 5, 0) dominated]

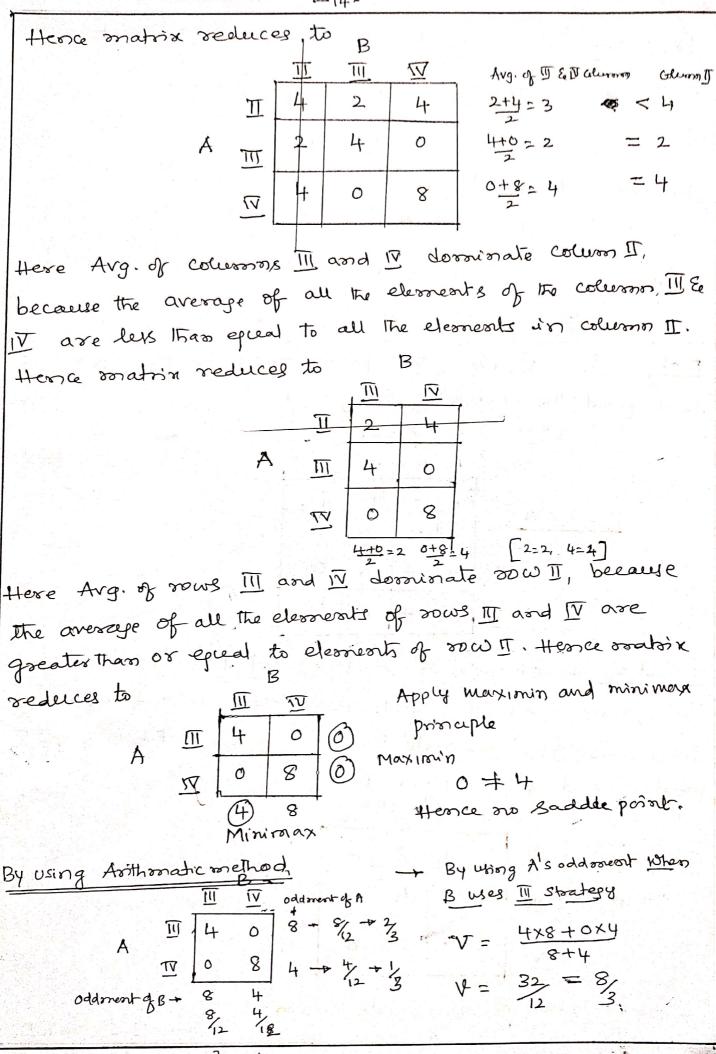
E value of the game = 0

Problem ?: - Reduce the following game by dominance and find the Value of the game.

Player B.

I II III IV

Player A II 3 2 4 0


II 4 2 4 0

IV 0 4 0 8

Solution Here, Observe the matrix, rule 1 is not satisfied (ie column wise). Then go to row wise. (ie rule 2). Here Row II dominate Row I because Row I second Row I tence matrix reduces to

100		#	P	(ay	A S&B
	I	3	4	2	4
player A	111	4	2	4	0
	14	0	4	0	8
				-	

Here Column III donninate Column I becoure

-15-The Complete solution is Optimal Strategy for player A (0,0,2/3,1/3) optimal abortegy for player B (0,0,23,13) E Value of Game = 8/3 (+ve value means player A problem No: 3: . Solve . the following game by using principle of dossispance, players II 2 3 2 player A -5 T 3 2 -1 4 4 3 2 -2 5 Solution! - Column IV dominates column I, II and I Vi dominte Because all the elements of column IV are < The elements of Columns I, I & and elements of column V < the element of column VI Player B 17 X TII 3 2 playerA 4 2

Row 4 dominate Row 5 Row 2 dominate Row 1

716-
Hence mateix reduces to
player B
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Avg. of columns III and IV. dominate volumn I. Hence
Avg. of Columns III and IV donner of player B mater reduces to III IV 2 1 3
player A 3 7 -5
Avg. of nows 2 and 3 doominate row 4. Hence roatein reduced to [1+7] 3-5 = 4 -1
A 2 1 3 D Maximin 3 7 -5 -5 1+3 Maximin No saddle point
By rising Arithmatic method
Oddments of B $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

The Complete solution 18
Obtimum Startey for player A = (0, 6/4, 1/4, 0, 0)Optimum Startey for player B = (0, 0, 1/4, 3/4, 0) V = 13/4

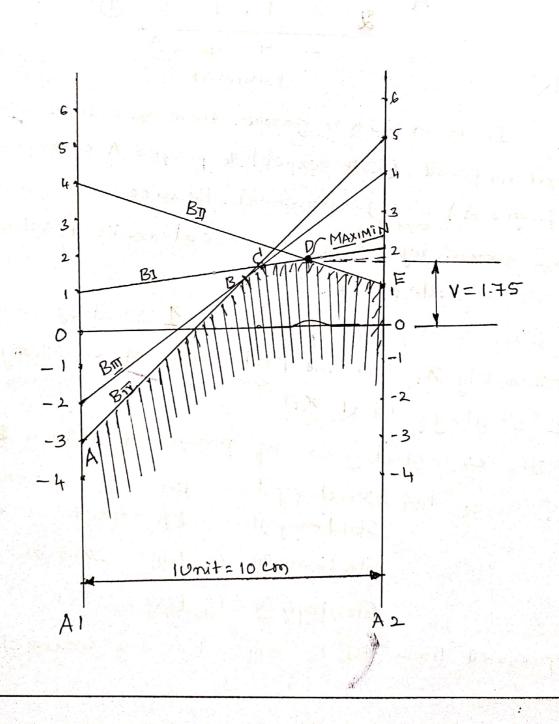
GRAPHICAL SOLUTION TO 2XX Or mxz game

1. Solve the game whose pay-off matrix is

Soln: - It is a 2xn game. Here you have to find Maximin point. (with respect to player A, or expected gain of player A) Use graph sheet. Reduce 2xn game into 2x2 game by using graphical method, when there is no saddle point.

Suppose a player A chooses I strategy with probability of choosing his probability of choosing his 2 strategy is (1-x1)

The expected gain of player A when player


B uses his strategy I is $BI = 1x_1 + 2(1-x_1)$ Strategy II is $BII = 4x_1 + 1(1-x_1)$ Strategy II is $BII = -2x_1 + 4(1-x_1)$

Stockegy IV is BIV = -3x,+5C1-x1)

Represent these BI. BI, BII & BIY by means of lines

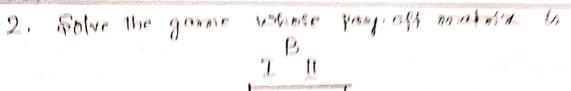
procedure? - Two vertical lines are drawn one unit apart Take lunit = 10 cm - (These vertical lines represent stoategies of A A, and A2).

To draw the gain line of player A, when player B uses streetegy I, Join value of 1 on first line to Value of 2 on line two. Draw other gain line of Value of 2 on line two. Draw other gain line of player A voe have to find a point value of snaximize player A voe have to find a point value A (ie Maximin) the minimum expected gain of player A (ie Maximin)

From graph, point D'(MAXIMIN) is The highest point of the lowest boundry is the repaired point. There are two course of action (BI and BII) corresponding to this point are available. le player B uses I and I stralégy out of 4 Strategies. Hence 2x4 materia reduces to

2×2 game. A 2 2 1 1 Maximin

Check saddle point.


1 = 2 MaxIMIN & MINIMAX No saddle point.

Then By using Anithmatic melting oddonesits of A Oddments of 3 1

To Find value of the garsse! Ver By uling oddonest's of A When B' was strategy I $V = \frac{1 \times 1 + 2 \times 3}{1 + 3} = \frac{7}{4} = 1.75$

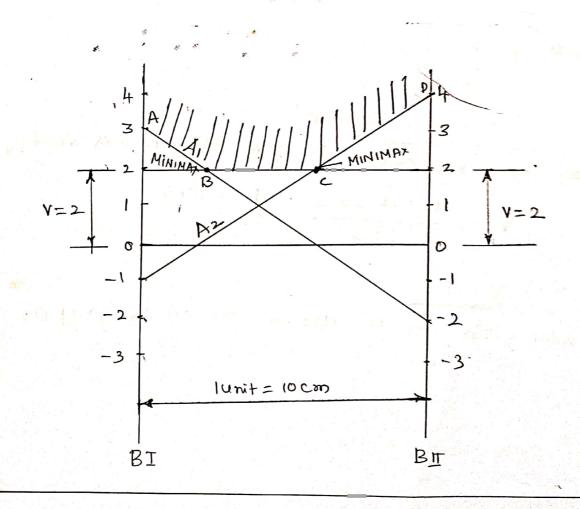
V=1.75

The value of the game is also shown on the graph.

Soln; It is a (mx2) game. Here use have to find

MINIMAX point (with respect to player B.

Suppose the player B chooses his I strategy with probability 41, Then the probability of wing his


strategy is (-41)

The expected pay-of of player B, when A uses

1 Strategy = 34,+-2(1-41) = A1

2 strategy = -14+4C1-41) = A2

3 Strategy = 24, + 2(1-41) = A3

ABCD is the upper boundary and B and C is the lowest-Point of the upper bowndry i.e (Minimaxpoint). Hence (3×2) game is reduced to (2×2) game.

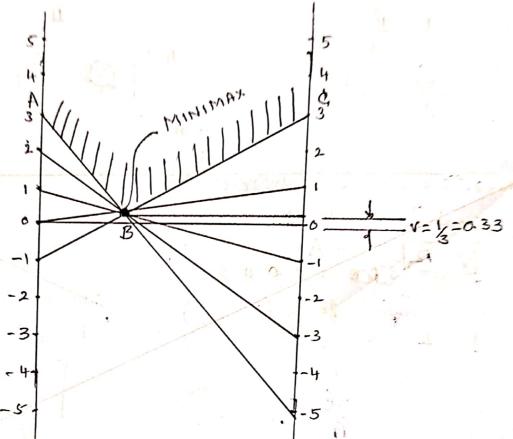
Consider point B & point d

A
$$2\begin{bmatrix} -1 & 4 \\ 2 & 2 \end{bmatrix} = 1$$

MAXIMIN = MINIMAX

MINIMAX

 $2 = 2$


Hence Saddle point exist

Hence value of Garne = 2,1 from both the points B and C. only strategies changes. Hence Saddlepoint is (3, I) and V=2 for point B,

Here Saddle point in (3, 11) and v= 2 for point a

It is a (my.2) game. Reduce (my.2) & to (2/2) by graphical mothers.

Solution! -

All the lines pass through the miniman point P. Line I, II

III have positive lines and lines IV & V have negative

Slepes. By the combination of positive and negative

Slepes, the following Six (2×2) reduced matrixes are
obtained. B

Obtained B

A I [3 -5] A I [3 -5] A I [1 -1]

A I [3 -5] A I [3 -5] A I [1 -1]

V O I

Now for all Six (2x2) game. Apply first Moximum and MINIMAX principle, when saddle point exists find the value of Game, other wise, by apply Anith matic method to find the value of Game.

Solving the six games, we get the following results:

Check, There

- × - × - × -

lower value of the game and minimax is called upper value of the game, it can be shown That MaximinAS Minimax B.

SADDLE POINT: A game in which the Maximin for A is equal to Minimax for B is called a game with Saddle point.

VALUE OF THE GAME! The pay-off at the Saddle point is called a value of the game, and obviously the maximin for A is equal to orininax for B: FAIR GAME: A garre in which Maximin=Minimax is equal to zero. Then the game is said to be Fairgam Strictly determinable game! - A game is said to be strictly determinable if Maximin = Minimax= value of the game.

PURE STRATEGY PROBLEM

(i) Solve the game whose pay-off matrix is played BJ-shitoges for B.

quen below; 43, 4 I B are 415 & Game. -3 - value of the garre. given below is in Note: Apply player (0) Maxionin Maximin & (0) 2 Minimax principle. A+2 -4 -2 Maximin principle 3 is for player A (O') 5 MINIMAX principle MINIMAX is for player B. | Select Max Value of the Strategies of player B. i.e 5,0 and 6

when he play the strategies 4,5 and 6 J and select

[Select minimum value of Strategies of players A ie -3,0,-4] and select moximum of this, 110 000, which correspond to Shategy 2 of the Player A.

minimum Value of this ie o which correspond Scanned with CamScanner

MODULE-5: SEQUENCING

The main objective of sequencing problem is to find a sequence among (n!) (where n is the number of jobs and on - no: of ookes) number of all possible sequences for processing the jobs con the machine) so that the total clapsed time for all the job. will be orinimum.

Termirology,

- (1) Number of machines! It means the Service facilities through which a job must pass before it is completed.
- (2) processing order. It refers to the order in which various machines are required box
- (3) processiong time! It means the time required by each job on each machine.
- (4) Idletime on a machine! This is the time for vouch a machine remains idle during at the total elapsed time!

 during a the total elapsed time!
- (5) Total elapsed time! This is the time between starting the first job and completing the last job which also include the idle time if exists

No passing rule: - It means passing is not allowed. i.e maintaining the same.

orders of jobs over each machine.

For ex: - There are two machines M, & M2 and processed in the order M. M. . Then this rule will one and that each job will go to maching Mi first and then to M2 (i.e it a job is finished On Mi, It goes directly to machine M2 if it is empty, otherwise it starts a waiting line or joins the end of the Waiting line;

principal Assumptions:

- (1) No machine can process more than one operation at a time.
- (2) Each operation once started must be performed till completion.
- (3) Each operation must be completed before any other operation which must precede is started
- (4) Time interval for processing are independent of the order in which operations are performed
- (5) A job is processed as soon as possible subject to the ordering requirement.
- (6) All jobs are known and are ready to start processing before the period under corrileration begins.
- (F) The time required to transfer jobs between machines is negligible.

TYPEI: PROBLEMS WITH N JOBS THROUGH TWO MACHINES : OF MINES

JOHNSON'S ALGORITHM. The algorithm which

is used to optionise The total elapsed time for processing njobs through two machine is called Johnson's algorithm which has the following Steps,

For exi! - There are five jobs each of which must go through the two machines A and B in the Order AB, processing times are given below.

JOB		12	3	4,	-5	
Machine A	5		9	3	10	
Machine B	2	6	П	8	4	

Determine the sequence for five jobs that will miniorise the total elapsed time,

given problem is I on machine A for Job 2.

So perform job 2 in the beginning as shown below Order AB

The reduced list of processing time becomes

1	JOB	1	3	4	5
	MICA	5	9	3	10
	MICB	2	1	8	4

A Description of the second
Again the smallest processing time in the
reduced list is 2 for job 1 on machine B.
So place the job 1 Last. Machine A 2 1 Machine B
Continuing in the same manner, the next reduced
Contrarces
dist is obtained of 15 15 15 15 15 15 15 15 15 15 15 15 15
JOB 3 4 5
MICA 9 3 10
MICB 7 8 4 Soll Squared to be seen to
to sequence Brown and
Leading to the 12
12 4 SI
and the reduced list.
1 103 3 5
MICA 9 10/ 200221732 201 300000000000000000000000000000000
MICB 71 14 psto (.1) out
aire rise to sequence
A 2 4 5 1 B
sequence is obtained
Finally the optional sequence is obtained
Flow of jobs through machine A and B using
the optional sequence (VIZ) 2-4-3-5-11
the optional
Professional Library Asing Profession
Harris State Harris Land Control Control

Coss	putal	rion of	The -	total ela	apsed ti	me and
mac	hine	Idle Li	rne.	Julio H	Story of the state	110/
-	Mac	hine A	Machi	ne B	Idlet	isse
Job	Time		Time in	Time out	MICA	MICB
2	0	1	1	1+6=7	0	16 302
4		1+3=4	٦	7+8=15	0	0.
_ 3	4	4+9 = 13	15	15+7=22		0
5	13	13+10=23	23	23+4=27	0	
	23	2-3+5=28	28	28+2=30	30-28=2	7
Faosa	n the	above -	table	we find	that to	tal elabsed
		To Table .			more and the second	rehine Ais
,					3hrs.	
1 2 130	,,		El II+			
1	while.		1		e that o	
the	total	elapsed	time	(in hour	8) repuir	ed to
Comit	olete ti	ne follor	ging t	asks on		chine.
Cesso		V		111	V V	V
		ASK A			FGH	T
		$\frac{1}{1}$ Chine $\frac{1}{1}$ C	1 7	9 6	8 7 5	4
	6 +	- 6	1 2 1 1	4 3	938	111
The	Option	al seque	nce			
Magk	neI	//-	1	// //	71	
/-	+ A			// //		Machinely
/	7				1 5/1 9	EEG
1	// A	XX C	3 //	// '	E 9/	B C and
		I 9	B	1 1/6	E/G	
Jhe/Find	2 //		//	A	1 -// 9	X/ BIXA

M

Tat

44

B

50

58

2 hrs

61-50

11 /2

61

TYPEIL: PROCESSING OF JOBS THROUGH THREE

MACHINES A, B, C.

Consider on jobs (1,2-.. on) processing on three machines A, B, C in the order ABC. The Optional Sequence can be obtained by Converting the problem into two machine problem. From the 80 converted two machine problem, we get the optionum Sequence using problem, we get the optionum Sequence using

To Convert into two most problem, The following any one of the conditions must satisfy. For order ABC

(i) Find the minimum Ai > max Bi
Ox minimum Ci > Max Bi

If atteast one of the inequality (in the is about 1) is satisfied, we define two machines Gland H. Satisfied, we define two machines Gland H are Such that the processing time on Gand H are given by $G_i = Ai + Bi$ i = 1, 2...n $H_i = Bi + Ci$ J = 11, 2...n

For the converted machines Gand H, we obtain optionum sequence

Example 1: We have five jobs each of which must go through the machines A, B c in the Order ABC. Determine the sequence that missionise the total slapsed time.

JOHNO	1	2	3	4	5/
MICA	5	7	G	9	5
MICB	2		4	5	3
MICC	3	7	5	6	7

Solution! The Optionum septembe can be obtained by Cornesting the problem into two on Ic by using the following steps. min (Ai Ci) = (5,3)

, max (Bi) = 5

Josin Ai = = max Bi

Fr. i min Ai > max Bi is satisfied.

We convext the problem into two machine problem by defising two machines Gand H, Buch that the processing time on G and H are given by

Gir= Ai+Bi

Hi = Bi + ci

JOB		· 06 1, 2- 1.	3	Last 4	5
G		8	10	14	8
H	5	8/	1.9		10

The Option	- ,9 ×	4-	5-V				
G +	2	5	4	3		11°	+1

Total elapsed time and Idle time on Three machines

		-		roods in the						1
JOB	Mad	hineA	Mac	hineB	Mac	hi ne G	Id	le ti	ine	
700	In	out	In	out	In	out	A	В	C	
2	0	٦	٦	8	8	15	0	7	8	
5	٦	12	12	15	15	22	0	4	4	
4	12	21	21	26	26	32	0	6	0	-
3	21	27	27	31	32	37	0	1	0	1
1	27	32	32	34	37	40	40-32 =08	(40-34)	12	
			· 7.	1111) 18	156		= 25		-

Ex: 2: - Given the following data: -(a)

			· ·	_	V 63 - 601 60 6		
A. C. C. C.	Job	La lad	12	30	4 ~	5	6
	MICA	212	10	9	· Augus	87 E	9
	MICB	ic fr	- G	CO 6	5	4	114/25
11	MICG	6	1, 5	15-6)	G-4	2	F H

- (b) order of processing jobs: ACB.
- (c) Seprence Suggested! Jobs 5-3-6-2-1-4
- (i) Determine the total elapsed time for the Sequence Suggested
- (ii) Is the given sequence optional.

T Ciss	f your	answer	to (iii)	18-1	10, det	serves
-++ - /	abtizand	Sequen	co and	the -	total e	lapsed
time	alsoci	aled b	ith It.	1 pros	go.#]	100 x b 1 250

Solution! - Arrange the data in the order of processing: ACB

JOB	1	2 3 4 9	
MICA	12	10 9 14	+
MIC d	6	5 6 4	4
		6 6 53	
M/c B	15.30.1		-

Verification of condition!

Ministruson processing time for machine A = 7

Maximuson processing time for machine Cl = 6

Maximuson processing time for max Bi

prior Ai 7 max Bi

Hence condition is satisfied.

	. 1 0	lapsed	time.		T DAIG	0	Idle	B
To		eterior year	MI	cc 111	MIC	24	A - C	-
JOBS		OUT	- IN-	007	IN	OUT		- Jul
7.70	O	7	- 12	9	19	13		
5		16	16	22	22	28	***	
-3		16	10		5.0			
6	16	25	25	29	29	33		2
- 2	25	35	35	40	40	45		
	35	47	47	.53	53	60		
4	47	61	61	65	6.5	70		
	111000000000000000000000000000000000000					10		

ii) The optional sequence can be found by the melli
already described. Grand Hi and is given his
Consideral wo
Gi = Ait Ci Mah
JOB = (G) = 15 Gi
2 = 15 11 105
3 = 15 1 12
4 = 18
= .09 b
6 = A = 13
The optional sequence is
1 3 2 4 6 5
(ii) Therefore the sequence suggested is not optima
Total elapsed time!
Total etaps MICA MICA MICB A.C. B.
JOB" IN OUT IN OUT IN OUT
1 0 12 12 18 18 25
3 12 21 21 27 27 33
2 21 31 36 36 42
4 31 45 49 49 54
6 45 54 54 58 58 62
5 54 61 61 63 63 67

TYPEIII: PROCESSING OF M jobs Through

m-machine.

Consider njobs (1,2...n) processing through K machines M, M2 ... Mk in The Barre order. The iterative procedure of obtaining an optimal Sepuence is as follows.

Step: 2: Socion Mil > max Mij for j= 2,3. .. k-1 or Firstly check whether doin Mik > max Mij for j= 2,3, ... K.1.

If the inequality in step 2 are not satisfied the snethed fails, other waise, go to next step

In addition to step 2 if Mi2+ Mi3 + C. Mik-1 = G, Where c is a positive fixed constant for all

Ex: Four jobs 1,23 and 4 are to be processed on each of the five machines A, B, C, D and E in the order ABCDE. Find the total minimum elapsed time if no passing of jobs is permitted Also find the idle time for each machine.

Machines 2 6 A 6 4 3 5 B 4 2 5 6 2 D E

Solution! Convext the five machine problem into two machine problem, by adopting the following steps.

onin $(A_i, E_i) = (5, 6)$ i = 1, 2, 3, 1

max (Bi, Ci, Pi) = (6, 5, 6)

The inequality

voin (Ei) = 6 > max (Bi, Ci, Di)

is satisfied. Therefore we can convert the problem by considering problem into two machine problem by considering two fresitions machines. as Gi and Hi.

Such 1 Fat Gi = Ait Bit Cit Di Hi = Bit Cit Dit Ei i= 1,2,3,4.

		- 1	% <u>0</u>	3	- 4
	Job	1 21	1. 2		3446
	G	17	1210,	20	NI
-	Н	19	25	23	O. S.
	9.6	1-1-1-60	dura	Y 14	- Parkers

G+ [1/3/2/4]

Тов	MachineA		Mac	Machine B		Machine d		Machine D		hine E
-10D		out	IN	out	In	out	In	out	In	out
201 6	0	- The	7	12	12	14	14	17.	17	26
3	A.	12	12	1.6	16	21,	21	27	27	35
2	12	18	18	24	24	28	28	33	35	45
4	18	26	26	29	29	32	3,3,4	35	45	51
	The Park State of the Park Sta				7	4	A			1

		2 2			1	
	70B	A	13	Idle tion	D/2	E
4	1	0	71:	12/	14,	171
	3	0		. 2/	4	1
	2	000	1/2	3		O
M	11/4/	. 0	2 <	1.	6	0
	- H					
		51-26	51-29	51-32	51-35	
1	A X-1	25	33 1	37	35	18
+			~ X.	A.	26, 1	,

Ex: 2 When passing is not allowed. Solve the following problem giving an optimal solution

	Machine al					
Job	M,	M2	M3.	M4		
A	24	1	7	29		
B	16	9	5	15		
′ C	22	8	6	14		
D	21	6	8	32		

Solution: - The given problem is having four Jobs on four machines. The Optionum Sequence Can be obtained by converting into 2-machine problem. The following steps are adopted to find the optionum sequence. Min (Mi) = (16,14) max (Mi2, Mi3) = (9,8) Both the inequalities. Min Mil = 16 > Max (Mil2, Mi3) 16 >, (9,8) Min Mi4 = 14 > Man (Miz, Mis) ale and 14 > (9,8) Satisfied. In addition to this inequality also we have Mi2+Mi3 = 14 for i=213. We have two machines M, and My in the order M, M4. CD A JOB 16 22 21 241 MI 11 14 1 32 29 M4 The Optional sequence is A B

					-15	-]					
Total elapsed time!								LIKE			
Тов	Macl	ine	Mil	Machi	ne M2	Mach	rine M3	Mac	Machine M4		
JOB	Time in	Tires	out	In	out	In	out	_Ls/	out		
0	0	2	21	21	27	27	35	- 35	67		
Α	21	L	+5	45	52	52	59	67	96		
B	45	6	51	61	70	702	75, ,	96	mi		
, C	61	8	3	83	916/	91	97	111	125		
, 3 F.				of to	hair	. mich	- lab				
		,		्रा । प	Idle time	ne /			دملايك		
	-	OB	M	, M ₂	_ M3	M4			L 1115		
		D	0	21		A35	Soresing Sort Sic				
		A	0	18	17.	5 ds					
		В	0	9		4-1-5	g Police	r - d			
A	2 6	C	01-	13	116b	+=>+1		3 . '1	Solution		
	4		125-83	125-91	125-97	149 b	Le cè Ca	orl and			
X Lo	7 - 2 3 X		42 hrs	95 hz	1991 has	35 hr	sill k	an 1	19		
				6 H 61 h.	Los Los	V Kur	salt as	ord or or			
				i)			1.600				

109: 10 AB

TYPEIV: PROCESSING OF 2 JOBS ON M-Machines [By Graphical method]

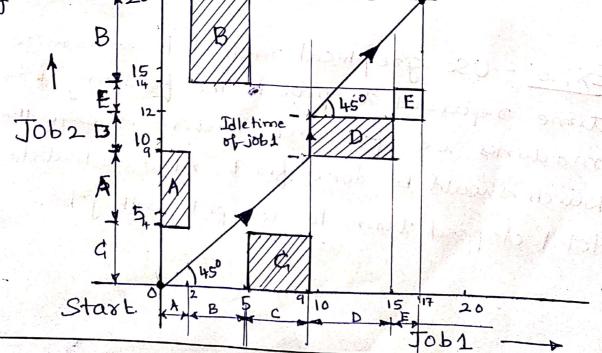
Example 1: Use graphical method to minimise the time needed to process the following jobs on the machines shown below ie for each machine find the job which should be done first. Also find the job which should be done first. Also calculate the total time needed to complete both the jobs.

ıji lı

rime

				1-		La contract	1
TADI	Sequence of mole Tione	A	B	C	D	E	
JOR I	micTime	2	3	4	6	2	
JOB 2	Sepuence of	С	A	D	E	В	A
5002	m/c Time	-4	5	3	, 2	6	78
				1	- 1		1

Solution' - Step 1! First draw a set of axes where the horizontal axis represents processing time on job 1 and the vertical axis represents processing time on job 2.


Step?! - Mark the processing time for job I and job 2 on the horizontal and Vertical lines respectively according to the given order of the mice.

Step 3! - Construct various blocks starting from the origin (starting point) by pairing the same machines until the end point.

Step 4! - Draw the Line Starting forom the origin to the end point by moving horizontally, vertically and diagonally along a line which makes an angle of 45° with the hooizontal line (base). The hooizontal Segment of this line indicates that first job is Under process while second job i's idle. Similarly, the vertical line indicates that selond job is under process volville first job is idle. The diagonal separent of the line shows that the jobs are under process

Step 5:- An optionum path is one That orionismises Simultaneously. the idletime for both the jobs. Thus we must Choose the path on which diagonal movement is

Step 6: - The total elapsed time is obtained by adding the idletione for either job to the processing time for that job. 720

= processing time + Idle time Total proceesing time of job 1 [() = 1 () = 1 () 17 + 3 = 20 hrs

1 40 1 = 1) - 1-11 12 to 08 or went sull 13

Proceeding time Idle tione Total processing time = 1 of job 2 = 2040 = 20 hrs

The optional sequence is

Ji before J2 on mcs

J2 before Ji on on C's Chop & E

rof some franksoard gill of golf routies

when I have it would be add to

For m/CA,

J, before J2 on M/C

Ji before Ji on me

Ex: 2! - Use graphical method to orionomize the time required to process the following jobs on the machines i.e. for each machine specify the job which should be done first. Also calculate the total elapsed time to complete both jobs.

	and in the	e sanda a company a	The state of the s				
	JOBI	Sepuence	A	B	C	D	E
-	<u> </u>	Time (in has)		9	5	13	5
	JOB2	sequence	B	ر	Α	D	E
		Tirme (in ha)	11	9	٦	5	13
٠,				Artible		e and a set of	

Total proceeding time = processing time of Job!

+ Idle time of Job!

= 39+4+7 = 50 has

OR

Total processing time = processing time of Job 2

+ Idle time of Job 2

= 45+5= 50 hrs

The optional sequence is

I, before Iz on son | C A

J2 before J1 on mice B, C, D, E

Section: I

rear Advisor I

-uvangere-04

Scanned with CamScanner

Single Scheduling Rules or Single criterion Ruk These are the most simplest but effective way of assigning jobs. The decision is based on single Criterion and selecting this criterion is a difficult Job. Jus is because a rule which minimizes the processing time may not qualenter high labour 08 machine Utilization. In a Biroilag Way, There is no qualantee that the inprocess-inventory Cost will be low. Sometimes it will be difficult to a fallow these rules storctly, as it happens with FCFS rule! Everythough it is fairly to give préférence to a customes volus comes first, Some times this rule has to be broken to give attention to another customer phose vegences to provide a particular product has to be served at a faster rate. at a faster rate. The decision is based on any one of the tollowing Single Contenion. (i) FCFS = First Come First Served priority is given to the job which arrives easliest. It is used in service industries

egs. banks, post office.

b) SPT - Shortest processing lione Priority is given to the waiting job which has Shortest processing time or vonose due date is earliest.

The order of arrival and due dates are ignored.

(C) LPT - Longest processing time

priority is given to the job which has longest processing time.

(d) EDD 5 Earliest due date

priority is given to the job which has its earliest due date, ignoring the processing period.

e) Least slack!

priority is given to a job, which has least Stack period. Slack is the difference between delivery trove and processing time?

Slack = delively time - processor persod.

Ex: A. Shown below ou the due dates (number of days until due) and processing thorne

resolutions (number of days) for five jobs that

Were assigned as they assived. Sequence the

Jobs	s by	priority	rule (a)	FCFS	(P) EDD	(c) Ls
(d)	SPT	. (e) L PT	del soil	(11/2)	- 229 JOKG	30

Тов	Due Date	process time
A	8	7
B	3	4
C	7	5
D	9	2,
 E	6	6

Find out (i) Average Completion (i) Average job Laterness (ii) Average number of jobs at work

Centre for FCFS and SpT.

The following table gives the priority to be given to the jobs, A, B, C, D and E using different ruley

to the fo	. Y =	man Mala	LS-	SPT	LPT
S.L.NO.	FCFS	EDD			
	A	B (3)	B(-1)	DC2)	A(7)
2	B	E(6)	E(0)	B(4)	E(6)
3	C	c (7)	A(1)-	C(5)	C (5)
4	D ,	A (8)	,C (2)	E(6)	B(4)
. 5	E	D(9)	(7)	A(7)	D (2-)
				1	"

			-24-		
	perfor	mance o	b FCFS	bajosity su	le
	JOB Sepuence	process time (2)	Flow time (3)	Duedate (4)	Days late Co if regative) (5) (3-4)
/	A	7	657	8	0
	В	. 4		3	8
	<u>C</u> .	5	16	99 0	9
	Ď	2	18	9	9
	E	6	24	6	18
	is	24	7-6		44
	Perfor	mance of	SPToul	e:	City contacts
	D	2	2. T96	690 ef	0
	B	4 Files	of Gut as	VIE 3141	3,
	- C	5 5	CU3 k	(E) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A 400 Mar
	E,	6	174	761 e	10H OLLO
	'A	47 (0)	24-)	(8)	A16
	(,)	124	60	(3) [34
	The state of the s	rage Comp	pletion line		
	For	FCFS!	12	15.2 days	
		SPT :	60/5)4	12 days.	
Start.					

	(b) Average Job Lateness:	IJJ6
	For FCFS: 44/5 = 8.8 days 1	de
		in suf
	(C) Average number of jobs at WC	A
	FOX FCFS: 76/24 F 3.2 John	
	FOX SPT: 60/24 = 2.5 JOBS	
	Fire ore live jobs which are Wait	1009
	of a shop the join	
	in the alphabetical order. Data on procession the alphabetical order. Data on procession time delivery due in deeps from now onward	4
7	time delivery due to delivery due to	n I s et s
	is tabulated.	
	Jobas Sloberd A B, C P	E
1	processing tione-days 4 20017 14 9	H
	12 Mai de deues from now 6 20 18	12
	coloulate how onuch delays is involved is)
(colculate how ornich delays is involved is deliverity each job if jobs are processed.	
(.	i) First come first served ban's and	
à	in Based on shortest processing time	

		- 26 -	-35-				
Solution	100! - (i) F	CFS Bas	Marco el	rs for stall	72	L. 11)	
Job	processtin	ne Flow	sound !	Double	de De	2)-(3)	
sequence	74	pk 2.0	- 311	G :	Co.	if meation	
A	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 10 14	0 886	6	C		
В	17.	21		20	13 4.	o ∤ F	
C	W. 90 10,	44	>Vode	12	3:		
E) 13	real co	4 5 5 5 45	s o bro 1	12 10 100	4/9	3 4	
Delay i	n days =	13 °	ob co	esp L	y // E	More sta	
(ir) Sy	ortest pro	cerring to	ک . معرد		Dank	مارة	
J8p	process	Flow /	Du	edate	Days (2)-(3)	
Sequence	1 34	00		Shap	Coyo	egative)	
A A	~ v) [4 ~	- 4	6		O	ri Lij	
D	9 79	13	12		19/9/	4-4-2	
E	terape tere	24	1 2	-J. 366	12	`V'N : E2	
\parallel c \parallel	14	38	1018	A 688	20		
B	17	55	2-	0	35		
			T	The state of the s	68	1	
x relays	Delays in days = 68						
Maria de la companya della companya		1/2					