# DEPARTMENT OF MECHANICAL ENGINEERING 

# COMPUTER INTEGRATED MANUFACTURING LAB MANUAL 2018 

(17MEL77)


Semester: $\qquad$ Batch No $\qquad$

Ravikumar H.N
Faculty Incharge

Mallikarjuna V.K
Instructor


## VISION OF THE INSTITUTE

To be center of excellence recognized nationally and internationally, in distinctive areas of engineering education and research, based on a culture of innovation and invention.

## MISSION OF THE INSTITUTE

BIET contributes to the growth and development of its students by imparting a broad based engineering education and empowering them to be successful in their chosen field by inculcating in them positive approach, leadership qualities and ethical values.

## VISION OF THE DEPARTMENT

The department endeavors to be a center of excellence, to provide quality education leading the students to become professional mechanical engineers with ethics, contributing to the society through research, innovation, entrepreneurial and leadership qualities.

## MISSION OF THE DEPARTMENT

1. To impart quality technical education through effective teaching- learning process leading to development of professional skills and attitude to excel in Mechanical Engineering.
2. To interact with institutes of repute, to enhance academic and research activities.
3. To inculcate creative thinking abilities among students and develop entrepreneurial skills.
4. To imbibe ethical, environmental friendly and moral values amongst students through broad based education

## PROGRAM EDUCATIONAL OBJECTIVES (PEO'S)

1.Enable to understand mechanical engineering systems those are technically viable, economically feasible and socially acceptable to enhance quality of life.
2. Apply modern tools and techniques to solve problems in mechanical and allied engineering streams.
3. Communicate effectively using innovative tools, to demonstrate leadership and entrepreneurial skills.
4. Be a professional having ethical attitude with multidisciplinary approach to achieve self and organizational goals.
5.Utilize the best academic environment to create opportunity to cultivate lifelong learning skills needed to succeed in profession.

## PROGRAM SPECIFIC OUTCOMES (PSO'S)

PS01:-Apply the acquired knowledge in design, thermal, manufacturing and interdisciplinary areas for solving industry and socially relevant problems.

PS02:-To enhance the abilities of students by imparting knowledge in emerging technologies to make them confident mechanical engineers.

|  | COMPUT MANUF B.E, VII Se <br> [As per Choic <br> (CB | NTEGRATED URING LAB <br> er, Mechanic ering ed Credit Sy scheme] |  |
| :---: | :---: | :---: | :---: |
| Course Code | 17MEL77 | CIE Marks | 40 |
| Number of Lecture Hours/Week | 03 (1 Hour Instruction+ 2 Hours Laboratory) | SEE Marks | 60 |
| Total Hours | 40 | Exam Hours | 03 |
| Credits -02 |  |  |  |

## Course Objectives:

| CLO1 | To expose the students to the techniques of CNC programming and cutting tool path <br> generation through CNC simulation software by using G-Codes and M-codes |
| :--- | :--- |
| CLO2 | To educate the students on the usage of CAM packages and cut part on virtual CNC machine <br> simulator. |
| CLO3 | To make the students understand the importance of automation in industries through <br> exposure to FMS, Robotics, and <br> Hydraulics and Pneumatics. |

## Part-A

Manual CNC part programming for 2 turning and 2 milling parts. Selection and assignment of tools, correction of syntax and logical errors, and verification of tool path.

CNC part programming using CAM packages. Simulation of Turning, Drilling, Milling operations. 3 typical simulations to be carried out using simulation packages like: Cadem CAM Lab-Pro, Master- CAM.

Program generation using software. Optimize spindle power, torque utilization, and cycle time. Generation and printing of shop documents like process and cycle time sheets, tool list, and tool layouts. Enter program, take tool offsets, cut part in single block and auto mode, measure the virtual part on screen in the virtual CNC machine simulator, for standard CNC control systems FANUC, FAGOR, HAAS and SINUMERIK.

## Part B

(Only for Demo/Viva voce)
FMS (Flexible Manufacturing System): Programming of Automatic storage and Retrieval system (ASRS) and linear shuttle conveyor Interfacing CNC lathe, milling with loading unloading arm and ASRS to be carried out on simple components.
(Only for Demo/Viva voce)
Robot programming: Using Teach Pendent \& Offline programming to perform pick and place, stacking of objects (2 programs).
Pneumatics and Hydraulics, Electro-Pneumatics: 3 typical experiments on Basics of these topics to be conducted.

## After studying this course, students will be able to:

Course Outcomes:

| CO1 | Understand \& write CNC part program for Turning, Facing, Chamfering, Grooving, Step turning, <br> Taper turning, Circular interpolation etc. |
| :--- | :--- |
| $\mathbf{C O 2}$ | Analyse CNC Mill Part programming for Point to point motions, Line motions, Circular <br> interpolation, Contour motion, Pocket milling- circular, rectangular, Mirror commands etc. |
| $\mathbf{C O 3}$ | choose high end CAM packages for machining complex parts and state of art cutting tools and <br> related cutting parameters; optimize cycle time, set up and cut part on anduse Canned Cycles for <br> Drilling, Peck drilling, Boring, Tapping, Turning, Facing,Taper turning Thread cutting etc. |
| CO4 |  <br> CNC Milling Machine. Understand\& write programs for Robot control; understand the operating <br> principles of hydraulics, pneumatics and electro pneumatic systems. |

## Scheme for Examination:

Two Questions from Part A-60 Marks (30 +30) Viva-Voce - 20 Marks
Total: 80 Marks

## DO's

1. Students must always wear uniform and shoes before entering the lab.
2. Proper code of conduct and ethics must be followed in the lab.
3. Windows and doors to be kept open for proper ventilation and air circulation.
4. Check for the electrical connections and inform if any discrepancy found to the attention of lecturer/lab instructor.
5. Performtheexperimentunderthesupervision/guidanceofalecturer/labinstructor only.
6. In case of fire use fire extinguisher/throw the sand provided in the lab.
7. Any unsafe conditions prevailing in the lab can be brought to the notice of the lab incharge.

## DONT's

1. Do not touch any system without their prior knowledge,
2. Never overcrowd the laboratory Leave sufficient space for the person to operate the equipment's.
3. Never rest your hands on the system and the display board.

## CONTENTS

| SL. | TITLE | PAGE NO |
| :---: | :---: | :---: |
|  | PART-A |  |
| 1 | CNC PART PROGRAMMING | 1-1 |
|  | GENERALLY USED G-CODES IN TURNING 2 | 2-2 |
|  | GENERALLY USED G-CODES IN TURNING 3-3 | 3-3 |
|  | LIST OF G \& M CODES USED IN SSCNC FOR TURNING CENTER 4 | 4-4 |
| 2 | GENERATE ABSOLUTE PART PROGRAM TO CREATE THE FOLLOWING5 PROFILE WITH FACING AND OD TURNING AND WRITE COMMENTS. | 5-15 |
|  | 3 WRITE A PART PROGRAM TO CREATE THE FOLLOWING PROFILE WITH $\mathbf{l}$ 16 $\begin{aligned} & \text { WACING AND OD TURNING. ABSOLUTE, INCREMENTAL } \\ & \text { FAND } \\ & \text { INCREMENTAL WITH USING CANNED CYCLE AND ARITE } \\ & \text { COMMENTS OF THE EACH LINE PROGRAM. }\end{aligned}$ | $16-17$ |
|  | WRITE A PART PROGRAM TO CREATE THE FOLLOWING PROFILE WITH FACING, OD TURNING AND STEP TURNING WRITE THE COMMENTS OF THE EACH LINE PROGRAM. | 18-19 |
|  | 5 WRITE A PART PROGRAM TO CREATE THE FOLLOWING PROFILE WITH20 STEP TURNING (UNDER CUT) WRITE THE COMMENTS OF THE EACH LINE PROGRAM. | $20-20$ |
|  | 6 WRITE A PART PROGRAM TO CREATE THE FOLLOWING FACING OD TURNING AND TAPER PROFILE USING G90 AND G94 FIXED CYCLE WITH FACING, TAPER TURNING WRITE THE COMMENTS OF THE EACH LINE PROGRAM. | $21-22$ |
|  | $\begin{aligned} & 7 \\ & \hline \text { WRITE A PART PROGRAM TO CREATE THE FOLLOWING UNDER STEP2 } \\ & \text { CUTTING AND THREAD CUTTING PROFILE USING G90 AND G92 FIXED } \\ & \text { CYCLE WRITE THE COMMENTS OF THE EACH LINE PROGRAM. } \end{aligned}$ | $23-24$ |
|  | 8 WRITE A PART PROGRAM TO CREATE THE FOLLOWING UNDER STEP2 25 CUTTING AND CONCAVE, CONVEX CUTTING PROFILE USING G90 AND 1 G02 CIRCULAR CYCLE WRITE THE COMMENTS OF THE EACH LINE | $25-26$ |


| 9 | WRITE A PART PROGRAM TO CREATE THE FOLLOWING UNDER STEP2 CUTTING AND CONCAVE, CONVEX CUTTING, USING G90 AND G02 AND G03 CIRCULAR CYCLE WRITE THE COMMENTS OF THE EACH LINE PROGRAM. | $27-29$ |
| :---: | :---: | :---: |
| 10 | WRITE A PART PROGRAM TO CREATE THE FOLLOWING PECK DRILLING3 OPERATION USING G74 AND Q PECK DISTANCE IN MICRONS. | $30-31$ |
| 11 | USING SWANSOFT WRITE A PART PROGRAM TO CREATE THE 323 FOLLOWING PROFILE WITH FACING, TURNING, STEP TURNING, DRILLING, CONCAVE/CONVEX AND THREAD CUTTING M50 X 3MM PITCH, CHOOSE A WORK PIECE OF SIZE 55 DIAMETER 250 LENGTHS. | $32-32$ |
|  | PART-B |  |
|  | OPERATING PROCEDURE OF MASTER CAM |  |
| 12 | TO PREPARE THE EXERCISE 1 MODEL AS PER THESKETCH USING3 MASTER CAM TOOL. | $33-48$ |
| 13 | TO PREPARE THE EXERCISE 1 MODEL AS PER THESKETCH USING4 MASTER CAM TOOL. | $49-57$ |
| 14 | TO PREPARE THE EXERCISE 1 MODEL AS PER THESKETCH USING5 MASTER CAM TOOL. | $58-75$ |



## CNC PART PROGRAMMING

Software: SwanSoft FANUC 0iT CNC Turning

## List of G \& M Codes used in SSCNC for Turning Center

GENERALLY USED G-CODES IN TURNING

## STANDARD G CODE FUNCTION

| G00 | Positioning in Rapid |
| :---: | :---: |
| G01 | Straight Interpolation |
| G02 | Circular Interpolation ( CW ) |
| G03 | Circular Interpolation (CCW) |
| G04 | Dwell |
| G10 | Change in Setting Value |
| G20 | Data Input in Inch |
| G21 | Data Input in metric |
| G22 | Stored Stroke Limit on |
| G23 | Stored Stroke Limit off |
| G25 | Spindle Speed Fluctuation detection OFF |
| G26 | Spindle Speed Fluctuation detection ON |
| G27 | Machine Reference Check |
| G28 | Automatic Machine Reference |
| G29 | Return From Reference |
| G30 | The 2nd Reference return |
| G31 | Skip Function |
| G32 | Threading Process Cycle |
| G40 | Cancel of Compensation |
| G41 | Compensation of the left |
| G42 | Compensation of the right |
| G65 | Call custom Macro |
| G70 | Repeat Cycle - Finishing |
| G71 | Stock Removal in Turning |
| G72 | Stock Removal in Facing |
| G73 | Pattern Repeating Cycle |
| G74 | Peck Drilling in Z Direction |
| G75 | Grooving in X - Direction |
| G76 | Thread Process Cycle |
| G90 | Fixed Process Cycle in Turning |
| G92 | Fixed Process Cycle in Threading |
| G94 | Fixed Process Cycle in Facing |
| G96 | Constant Surface speed |
| G97 | Constant Surface speed cancel |
| G98 | Per min feed |
| G99 | Per revolution feed |

GENERALLY USED M-CODES IN TURNING
STANDARD M CODES

| M00 | Unconditional program stop |
| :--- | :--- |
| M01 | Conditional program stop |
| M02 | End of Program with return to program start |
| M03 | Spindle Rotation, Clock Wise |
| M04 | Spindle Rotation, Counter Clock Wise |
| M05 | Spindle Stop |
| M06 | Tool Change |
| M08 | Coolant ON |
| M09 | Coolant OFF |
| M30 | End of Program, Reset and return to program beginning |
| M94 | Cancel Mirror Image |
| M95 | X Coordinate Mirror Image |
| M96 | Y Coordinate Mirror Image |
| M98 | Subprogram call |
| M99 | End of Sub Program |

List of G \& M Codes used in SSCNC for Turning Center

| Function | Address | Meaning of address |
| :--- | :---: | :--- |
| Program number | O(EIA)/(ISO) | Program number |
| Block sequence number | N | Sequence number |
| Preparatory function | G | Sercifies a motion mode (Linear, arc, etc) |
| Dimension word | $\mathrm{X}, \mathrm{Z}$ | Command of moving position(absolute type) of each axis |
|  | U, W | Instruction of moving distance and direction(incremental type) |
|  | I, K | Ingredient of each axis and chamfering volume of circulat center |
|  | R | Radius of circle, corner R, edge R |
| Feed function | F, E | Designation of feedrate and thread lead |
| Auxiliary function | M | Command of ON/OFF for operating parts of machine |
| Spindle speed function | S | Designation of speed of main spindle or rotation time of main spindle |
| Function (Tool) | T | Designation of tool number and tool compensation number |
| Dwell | P, U, X | Designation of dwell time |
| Dewignation of program number | P | Designation of calling number of auxiliary program |
| Designation of sequence No | P, Q | Calling of compound repeat cycle, end number |
| Number of repetitions | L | Repeat time of auxiliary program |
| Parameters | A, D, I, K | Parameter at fixed cycle |

1. Write a Absolute part program to create the following profile with facing and OD Turning and write comments.


## Work piece Information

Bar
Diameter: 70.000
Length: 250.000
Material:08F low-carbon steel

## Tool Information

- Work offset at the center
- Tools Management - Select the External turning $35^{\circ} / 90^{\circ}$ tool.


## Procedure

Choose the stand alone button
Click on drop down button
Select Fanuc OiT CNC System
Select MAC Encryption
Go to Run



Press write protect off


Press Reference and X and Z

Go to Parameter setting


Press parameter setting button to open Parameter setting window.

Select- 4 Position turret and press ok

## Options



Workpiece Setting, Go to - Stock size


Choose Length of Work Piece $=250 \mathrm{~mm}$

- Choose Diameter of the Work Piece $=80 \mathrm{~mm}$
- Check Replace work piece button to replace existing work piece .
- Press OK button.


## Tool Management:

- Add New Tool
- Edit Tool
- Tool Selection


Enter Diameter and Length of the tool in respected places

- Enter Rpm and Feed .
- Enter thickness of the insert.
- Enter Shank and its width.
- Then click OK button to add the toll to Library.
- select the External turning 35/55/90 tool - drag and drop to tool magazine- mount the tool

Workpiece setting - rapid position at center


Press Work set setting Button to view above Menu. To open Locate instantly window select Rapid Position button.


Select the position and press OK button.
Close the machine door

Offset setting - work - X00 - measure --- Z00 - measure
(Do not use this step if X and Z axis home position is zero)


Getting Ready to enter your first program
Before writing program you have to register for memory space.

Press Edit button.

PRDG
Press PROG Button

prog - edit - DIR - O0013 (Register your program No. start with alphabet 'O')
Press DIR Button in the Numerical panel to register the program. Type registry number in Program panel.
The registry number start with letter ' $\mathbf{O}$ '
Followed by number (ex: O0009).


Type the program by using Program panel or by using the computer key board .


In program panel press letter in smaller font press Shift then press button for example to type letter p press Shift then press $\mathbf{O}$ and $\mathbf{P}$ Button. After entering one line of code press EOF button press Insert button add this code to numerical control panel.


| Absolute Method | Comments / Remarks |
| :--- | :--- |
| O0012 | Program Number |
| T0100 | Work co-ordinate system |
| S400M03 | Tool T01 selection |
| M08 | Spindle to rotate at 400 RPM in Clockwise direction |
| G00X00Z00t0101F2.5 | Coolant on |
| G00X71 | Tool T01 Positions in Rapid traverse |
| G01X0Z-1F0.25 | 1 mm away from the set coordinate |
| G00X71 | Lanier Interpolation ( G01 ) Movements in X \& Z Directions to |
| G01Z-5 | create the paths. The feed is at 0.25mm/rev. Table feed $=0.25 \times$ |
| G01X0 | 400 rpm = 45mm/min |
| G00X71Z-5 |  |
| G01X65 |  |
| G01Z-205 |  |
| G00X66Z-5 |  |
| G01X60 |  |
| G01Z-205 |  |
| G00X61 |  |
| G28U0W0 | Go Back to tool change position in rapid ( m/c 00 ) |
| M09 | Coolant off |
| M05 | Spindle off |
| M30 | Program End |

After entering the program
Go to Auto mode
Select block by block
Cycle Start

Computer Integrated Manufacturing Laboratory

2. Write a part program to create the following profile with facing and OD Turning. Absolute, Incremental and Incremental with using canned cycle and write the comments of the each line program .


## Work piece Information

Bar
Diameter: 80.000
Length: 250.000
Material:08F low-carbon steel

## Tool Information

- Work offset at the center
- Tools Management - Select the External turning $35^{\circ} / 90^{\circ}$ tool.


## Procedure

1. Relese the Emergency button
2. Press Reference and $X$ and $Z$
3. Press write protect off
4. Go to Parameter setting - 4 Position turret
5. Tools Management - select the External turning $35 / 55 / 90^{\circ}$ tool - drag and drop to tool magzinemount the tool
6. Workpiece setting - stock size - $\emptyset 80,250$ length
7. Workpiece setting - rapid position at center
8. Close the machine door
9. Offset setting - work - X00 - measure --- $\mathrm{Z} 00-$ measure

## (Do not use this step if $\mathbf{X}$ and Z axis home position is zero)

10. prog - edit - DIR - O0013 (Register your program No. start with alphabet ' $O$ ')

## CNC Codes

Computer Integrated Manufacturing Laboratory

| Absolute Method | Incremental | Incremental with using canned <br> cycle |
| :--- | :--- | :--- |
| O0012 |  |  |
| G54 | O0012 | O0012 |
| T0100 | G54 | G54 |
| S400M03M08 | T0100 | T0100 |
| G00X00Z00F2.5 | S400M03M08 | S400M03M08 |
| G00X81 | G00X00Z00F2.5T0101 | G00X00Z00F2.5T0101 |
| G01X0Z-1F0.25 | G00U81 | G00U81 |
| G00X81 | G01W-2.5F0.25 | G94U-81W-2F0.25 |
| G01Z-5 | G01U-81 | W-4 |
| G01X0 | G00U81 | W-5 |
| G00X81Z-5 | G01W-5 | G90U-3W-200F0.25 |
| G01X77.5 | G01U-81 | U-4 |
| G01Z-205 | G00U81 | U-5 |
| G00X78.5Z-5 | G00W5 | G28U0W0 |
| G01X75 | G01U-3.5 | M09 |
| G01Z-205 | G01W-200 | M30 |
| G00X76 | G00U1W205 |  |
| G28U0W0 | G01U-3.5 |  |
| M09 | G01W-205 |  |
| M05 | G00U1 |  |
| M30 | G28U0W0 |  |
|  | M09 |  |


3. Write a part program to create the following profile with facing, OD Turning and

Step Turning write the comments of the each line program .


## Workpiece Information

Bar
Diameter: 80.000
Length: 250.000
Material:08F low-carbon steel

## Tool Information

- Work offset at the center
- Tools Management - Select the External turning $35^{0}$ tool.

CNC Codes

| Absolute Method | Incremental | Incremental with using <br> canned cycle |
| :--- | :--- | :--- |
| O0017 | O0017 | O0017 |
| G54 | G54 | G54 |
| T0100 | T0100 | T0100 |
| S500M03M08T0101 | S500M03M08T0101 | S500M03M08T0101 |
| G00X00Z00F0.25 | G00X00Z00F0.25 | G00X00Z00F0.25 |
| G00X50 | G00U50 | G00U80 |
| G01X50Z-50F0.26 | G01W-50F0.26 | G90U-2W-150F0.25 |
| G01X60 | U10 | $\mathrm{U}-4$ |
| G01Z-100 | W-50 | $\mathrm{U}-6$ |
| G01X70 | U10 | $\mathrm{U}-8$ |
| G01Z-160 | W-50 | $\mathrm{U}-10$ |
| G01X80 | U10 | G90U-12W-100F0.25 |
| G28U0W0 | G28U0W0 | $\mathrm{U}-14$ |
| M09 | M09 | $\mathrm{U}-16$ |
| M05 | M05 | $\mathrm{U}-18$ |
| M30 | M30 | $\mathrm{U}-20$ |
|  |  | G90U-22W-50F0.25 |
|  |  | $\mathrm{U}-24$ |
|  |  | $\mathrm{U}-26$ |
|  |  | $\mathrm{U}-28$ |
|  |  | $\mathrm{U}-30$ |
|  |  | G28U0W0 |
|  |  | M09 |
|  |  | M305 |


4. Write a part program to create the following profile with Step Turning ( under cut) write the comments of the each line program .


## Workpiece Information

Bar
Diameter: 80.000
Length: 200.000
Material:08F low-carbon steel

## Tool Information

- Work offset at the center
- Tools Management - Select the Groveeing tool with thickness of 1 mm and that edge also taken into consideration. ( move 1 mm and give 19 mm cutting)


## CNC Code

O0022
G56T0200S400M03M08
G00X00Z00F0. 25
U81
W-100
W-1
G90U-2.5W-19F0.25
U-5
U-7.5
U-10
U-12.5
U-15


U-17.5
U-20
M09M05M30
\%
5. Write a part program to create the following Facing OD Turning and Taper profile using G90 and G94 fixed cycle with facing, Taper Turning write the comments of the each line program ..


## Tool Information

- Work offset at the center
- Tools Management - select the External turning $35^{\circ}$ tool - drag and drop tool.


## CNC Codes

| Absolute Method | Incremental |
| :--- | :--- |
| O0017 | O0017 |
| G54 | G54 |
| T0100 | T0100 |
| S500M03M08T0101 | S500M03M08T0101 |
| G00X00Z00F0.25 | G00X00Z00F0.25 |
| G00X80 | G00U80 |
| G94X0Z-2F0.25 | G94U-80W-2F0.25 |
| Z-4 | W-4 |
| Z-5 | W-5 |
| G90X78Z-155F0.25 | G90U-2W-155F0.25 |
| X76 | U-4 |
| X75 | U-5 |
| Z-35R-2.5 | W-35R-2.5 |
| Z-65R-5 | W-65R-5 |
| Z-95R-7.5 | W-95R-7.5 |
| Z-125R-10 | W-125R-10 |
| Z-155R-12.5 | W-155R-12.5 |
| G28U0W0 | G28U0W0 |
| M09 | M09 |
| M05 | M05 |
| M30 | M30 |
|  |  |

5. Write a part program to create the following Under Step Cutting and Thread Cutting profile using G90 and G92 fixed cycle write the comments of the each line program .


## Work piece Information:

Bar
Diameter: 80.000
Length: 200.000
Material:08F low-carbon steel

## Tool Information

- Work offset at the center
- Tools Management -

First Select the Grooving tool with thickness of 1 mm and that edge also taken into consideration. ( move 1 mm and give 19 mm cutting)

Second select the Thread cutting tool Insert parameter Length 2.5 insert thickness and insert diameter 12 tool - drag and drop tool.

Pitch $=0.061 \times$ diameter

## CNC Code

00022
G54T0100S400M03M08
G00X00Z00F0. 25
U81
W-100
W-1
G90U-2.5W-19F0.25
U-5
U-7.5
U-10
U-12.5
U-15
U-17.5
U-20
G00U2

G28U0W0
G55
T0200S400M03M08
G00X0Z0F0. 25
G00U81W1
G92U-1W-105F0.25
U-3
U-5
G28U0W0
M09M05M30
\%

6. Write a part program to create the following Under Step Cutting and Concave,

Convex Cutting profile using G90 and G02 circular cycle write the comments of the each line program ..


## Work piece Information

Bar
Diameter: 80.000
Length: 200.000
Material:08F low-carbon steel

## Tool Information

- Work offset at the center
- Tools Management - First Select the Grooving tool with thickness of 1 mm and that edge also taken into consideration. ( move 1 mm and give 19 mm cutting)


## CNC Code

O0023
G54
T0100M03M08S400
G00X0Z0F025
G00U81
W-21
G90U-5W-19F0.25
U-10
U-15
U-20
G00W-40
G90U-5W-19F0.25
U-10
U-15
U-20

```
G00
U2
W60
U-2
G02U-10W-10R10
G02U10W-9R10
G00
W-20
U-11
G03U10W-10R10
G03U-10W-11R10
G00W-1U11
G28U0W0
M09M05M30
%
```


7. Write a part program to create the following Under Step Cutting and Concave ,Convex Cutting, using G90 and G02 and G03 circular cycle write the comments of the each line program .


## Work piece Information

Bar
Diameter: 80.000
Length: 200.000
Material:08F low-carbon steel

## Tool Information

- Work offset at the center
- Tools Management

Select the Grooving tool with thickness of 1 mm .for step turning and single point cutting tool $35^{\circ}$ angle length 15 mm , insert thickness 3 mm for convex and concave

## CNC Code

```
O0024
G54
T0100M03M08
X0Z0
G00U81
W-21
G90U-5W-19F0,25
U-10
U-15
U-20
```

```
G00W-40
G90U-5W-19F0.25
U-10
U-15
U-20
G00W-40
G90U-5W-19F0.25
U-10
U-15
U-20
G28U0W0
G55
T0200
G00X0Z-10
G02U-10W10R10
G00U11
W-15
U-1
G02U-15W15R15
G00U16
W-20
U-1
G02U-20W20R20
G00U21
W-40
U-1
G02U-10W-10R10
G02U10W-10R10
G00U1
W-20U-11
G03U10W-10R10
G03U-10W-10R10
G00W-1
U11
G28U0W0
M05M09M30
%
```


8. Write a part program to create the following peck drilling operation.
usingG74 and Q peck distance in microns.


## Work piece Information

Bar
Diameter: 75
Length: 200
Material:08F low-carbon steel

## Tool Information

- Work offset at the center
- Tools Management - Select the drilling tool with diameter 10 mm . Q is pecking distance in microns.


## CNC Code

O0024
G54
T0100M03M08
X0Z0
G74R5
G74W-40Q10000F0.5
G28U0W0
M09M05M30
\%


- Q is pecking distance in microns.


Exercise :
9.Using Swansoft write a part program to create the following profile with Facing, Turning, Step Turning, Drilling, Concave/Convex and Thread Cutting M50 x 3mm pitch, choose a work piece of size 55 diameter 250 length.


## OPERATING PROCEDURE OF MASTER CAM

## Step 1

The usual modification is that is done after initializing the master cam is the alteration of the available screen ie modification of grid size and as per the requirement of user screen, configure, selection grid. Select grid size (configure
$\rightarrow$ grid) The dimensioning requirement is usually selected ie Metric or English etc.

## Step 2

Once the screen and the dimensioning adjustments are done the basic required part geometry of the object is created by using the create command.
Create command: Rectangle or Circle or Line or Fillet.

## Step 3

After defining the tool parameters and the machining operations parameter, the job setup is done. The job is usually defined in terms of length width and thickness ( $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ ). The selection of material for the job is done in jobsetup

## Step 4

After the required part geometry is created, the tool path are defined on the selected geometry depending upon the milling operation.

Tool path $\rightarrow$ contour $\rightarrow$ save $\rightarrow$ chain $\rightarrow$ done
Tool path $\rightarrow$ pocket $\rightarrow$ save $\rightarrow$ area or chain or polygon $\rightarrow$ done

Once the tool path are defined, press done, tool parameter screen will appear where in the required tool diameter is entered or the tool can be selected from the tool manager.

Similarly the above step is carried out for all operations the contour parameter such as clearance, retract, feed, top of stock, depth aregiven.

## Step 5

Completion of the above setup leads to operation manager where in all the operation are selected by select all, paths are regenerated by Regenerate path, and by Verify, machining operation is done. Before machining, configuration is verified where in use of job setup values are highlighted.

Step 6<br>Press post button to the get the NC program

## Exercise 1

Aim : To machine the model as per thesketch.


## Procedure:

## Step 1

The usual modification is that is done after initializing the master cam is the alteration of the available screen ie modification of grid size and as per the requirement of user screen,

Choose-mainmenu $\rightarrow$ Screen $\rightarrow$ Configure $\rightarrow$ Current Configuration File Select- Mill9.Mcfg(metric)

Choose-mainmenu $\rightarrow$ Screen $\rightarrow$ Nextmenu $\rightarrow$ Sel.Grid
Select-Active Grid, Visible Grid, Spacing $x=1$ and $y=1$, Grid Size $=110$,
Origin $x=0, y=0$ and choose suitable for Grid.

| SCREEN |  | ACTIVE GRID |
| :--- | :--- | :--- |
| CONFIGURE |  | VISIBLE GRID |
| SYSTEM CONFIGURATION |  | DONE |
| CURRENT CONFIGURATION |  | SAVE AS |
| FILE |  | FILE NAME |
| MILL 7 MC FOR (METRIC) |  | SAVE |
| SCREEN |  | OIL |
| SELECTION GRID |  | BACK UP |

## Step 2

1. To create inner and outercircles.

- Choose-mainmenu $\rightarrow$ Create $\rightarrow$ Arc $\longrightarrow$ circpt+dia.
- Typediameter100 $\rightarrow$ Enter
- Selectorigin
- Press Esc. And reselectcircpt+dia
- Enter diameter58
- Selectorigin
- Press Esc. And reselectcircpt+dia
- Repeat same procedure for diameter 20 and 22 mm
- xi. Press Esc. to exit circle function
- Choose it screenmenu.

2. To create construction of rectangle /Square

- Choose-mainmenu $\rightarrow$ Create $\rightarrow$ Rectangle $\rightarrow 1$ point
- Enter width 92 and height 92 ( bcz. given figure is square) pressOK
- Selectorigin
- Press Esc to exit linefunction

3. Trimming unwanted portion oflines

- Choose-mainmenu $\rightarrow$ Modify $\rightarrow$ Trim $\rightarrow 3$ entities
- Select 1 entity as vertical line of square inside thecircle

2 entity as Horizontal line of square inside the circle 3
entity as arc of the circle inside thesquare.

| MODIFY |  | FILLET |
| :---: | :---: | :---: |
|  | TRIM |  |
| FILLET |  | RADIS |
| TRIM | 1ENTITY | ANGLE<180 |
| BREAK | 2ENTITES | TRIM Y |
| JOIN | 3ENTITES | CHAIN |
| MORMAL | TO POINT | BACK |
| CEPTS | MANY |  |
| NORBS X TO | CLOSE ARC |  |
|  | DIVIDE |  |

4. Copy and rotate thearc

- Choose-mainmenu $\rightarrow$ Xform $\rightarrow$ Rotate
- Select anywhere onarc.
- Choosedone.
- Selectorigin.
- Select copy, enter the values. No of steps 3 and angle is $90^{\circ}$
- Choose OK in the dialogue box remaining slots forcreated.

| XFORM | ANALYSE | DELETE | FILE |
| :---: | :---: | :---: | :---: |
| MIRROR | POINT | CHAIN | NEW |
| ROTATE | CONTOUR | WINDOW | EDIT |
| SCALE | ONLY | POLYGON | GET |
| ACALEXYZ | BETWEEN PTS | AREA | MERG |
| TRANSLATE | ANGLE | ONLY | E LIST |
| OFFSET | DYNAMIC | ALL | SAVE |
| GS COLOUR | AREA/VOLUM | GROUP | SAVE SOME |
| GROUP | E NUMBER | RESUIT | BROWSE |
| STRETCH | CHAIN | DUPLICATE | CONVERT |
| ROLL | SURFACE | UNDELETE | ER NEXT |
| BACK UP | BACKUP | BACKUP | MENU |

5. Trimming unwanted portion of lines(Square)

- Choose-mainmenu $\rightarrow$ Modify $\rightarrow$ Trim $\rightarrow$ 3entities
- Select 1 Entity vertical line of square inside thearc

2 Entity Horizontal line of square inside the arc
3 Entity arc inside thesquare.
6. To create constructionlines

- Choose-mainmenu $\rightarrow$ Create $\rightarrow$ Line $\rightarrow$ Polar
- Enter the first co-ordinateorigin
- Enter angle in degree $45^{0}$
- Enter the line length 45
- Press Esc to exit linefunction

7. To create inner 10 mm diametercircles

- Choose- mainmenu $\rightarrow$ Create $\longrightarrow$ Arc $\longrightarrow$ circpt +dia.
- Type diameter $10 \rightarrow$ Enter
- Select end point of inclinedline.
- Press Esc. And reselectcircpt+dia

8. Copy and rotate theCircle

- Choose-mainmenu $\rightarrow$ Xform $\rightarrow$ Rotate
- Select anywhere on 10 mm diameter circle
- Choosedone.
- Selectorigin.
- Select copy, enter the values. No of steps 3 and angle is $90^{0}$
- Choose OK in the dialogue box remaining 3 circles forcreated.

Now your drawing is ready for operations
The following operations to be conduct Using the geometry

- Facing
- Contour
- Pocketing
- Drilling


## Step 3

1. Make job setup for givengeometry

- Choose-mainmenu $\rightarrow$ Toolpath $\longrightarrow$ Job setup
- Enter the $\mathrm{X}=110 \mathrm{Y}=110$ and $\mathrm{Z}=55 \mathrm{mmrespectively}$
- Select Display Stack and Fit toScreen.
- Outside the drawing doted boundary red line isdisplayed

2. Another option for jobsetup

- Choose-mainmenu $\longrightarrow$ Toolpath $\longrightarrow$ Jobsetup
- Select stock origin $(0,0)$
- select the stockcorners.
- Enter the value of $\mathrm{Z}=55$ (+ value).
- Select the display stock checkbox.
- Select fit stock checkbox.
- Choose OK the stock should be enclosed by red dottedline.



## Step 4

1. Create tool path forFacing

- Choose-mainmenu $\rightarrow$ Toolpath $\rightarrow$ Face
- Select start point for the chain at periphery of thefigure.
- Choosedone.
- Right click in the tool display area and select a 10 mm flat endmill
- from the toollibrary.
- Right click on the tool display, go to tool type select face milltool,
- Select the facing parameters. Give Depth of cut -2 mm ( -negative)
- Select depth Cuts, Give Rough Cut 3, Finishing cut 1No. Finish Step0.5
- Choose OK twice in the tool path should be showingfigure.


1. Create tool path forContour

- Choose-mainmenu $\rightarrow$ Toolpath $\rightarrow$ Contour
- Select start point for the chain at position1.
- Choosedone.
- Right click in the tool display area and select a 10 mm flat end mill from the toollibrary.
- Select the contour parameters, Give Depth of cut -53 mm ( - negative), Use Multi passes, Depth Cuts and Lead in/outoptions.
- Choose OK twice in the tool path should be showingfigure.


3. Create tool path for pocket 1

- Choose-mainmenu $\rightarrow$ Toolpath $\rightarrow$ Pocket
- Select the 58 mm diameter circle.
- Choosedone.
- Right click in tool display area and select 8 mm flat end mill from toollibrary.
- Enter pocketing parameters and note that the depth shouldbe negative say-10.
- Choose OK the tool path should look like the picturepattern.

4 Create tool path for pocket 2

- Choose-mainmenu $\rightarrow$ Toolpath $\rightarrow$ Pocket
- Select first 22 mm diametercircle.
- Choosedone.
- Right click in tool display area and select 5 mm flat end mill from toollibrary.
- Enter pocketing parameters and note that the depth should be negative-12.
- Choose OK the tool path should look like the picturepattern.

6. Create tool path for pocket 3

- Choose-mainmenu $\rightarrow$ Toolpath $\rightarrow$ Pocket
- Select first 20 mm diametercircle.
- Choosedone.
- Right click in tool display area and select 3 mm flat end mill from toollibrary.
- Enter pocketing parameters and note that the depth shouldbe negative say-32.
- Choose OK the tool path should look like the picturepattern.

6. Create tool path forDrilling

- Choose-mainmenu $\longrightarrow$ Toolpath $\longrightarrow$ Drill
- Select Entities Choose 10 mm diameter circles one byone.
- Choose done. Tool path is generated, Choose once againdone
- Right click in the tool display area and select a 10 mm drill mill from the tool library.
- Select the drill parameters and note that the depth should be negative say-60.
- Choose OK twice in the tool path should be showingfigure.


## Step 5

Tool path Generator

- i. Choose - mainmenu $\rightarrow$ Operation
- A dialogue box appears select all regeneratepath
- When the tool path generation completes the dialogue boxdisplay
- choose verify, a deluge box is displayed select run ( machine) item.


Operation management of Tool Path


Configuration of Tool path
If your model is square/Rectangle go to shape, select box , suppose your model is Cylindrical go to shape, select cylinder


## Step 6

Post processor NC Program

- Choose-mainmenu $\rightarrow$ Operation
- A dialogue box appears select all regenerate path, choosepost
- Show path (desktop) for saving post processor Notepadfile.


Result: The required geometry is created.

## Post processor program Exercise 1

\%
O0000
(PROGRAM NAME - 1)
(DATE=DD-MM-YY - 27-11-07 TIME=HH:MM - 10:05)
(4. FLAT ENDMILL TOOL - 2 DIA. OFF. - 42 LEN.- 2 DIA. - 4.)

N100G21 47.R52.N200G1X-22.249 N202G2X-
N102G0G17G40G49G80G90 47.Y-22.249R52.
/N104G91G28Z0.
/N106G28X0.Y0.
/N108G92X0.Y0.Z0.
N110T2M6
N112G0G90X-32.249Y62.A0.S50M5
N114G43H2Z20.M8
N116Z5.
N118G1Z-6.667F2.2
N120Y57.
N122G3X-22.249Y47.R10.
N124G1X22.249
N126G2X47.Y22.249R52.
N128G1Y-22.249
N130G2X22.249Y-
47.R52.N132G1X-22.249

N134G2X-47.Y-22.249R52.
N136G1Y22.249
N138G2X-22.249Y47.R52. N140G3X-
16.527Y56.038R10.N142X17.489Y60.317R10. N144G1X-19.628Y64.836 N146G0Z10. N148X-32.249Y62. N150Z5 N152G1Z-15.333 N154Y57. N156G3X-22.249Y47.R10. N158G1X22.249 N160G2X47.Y22.249R52. N162G1Y-22.249 N164G2X22.249Y-47.R52.N166G1X-22.249 N168G2X-47.Y-22.249R52. N170G1Y22.249 N172G2X-22.249Y47.R52. N174G3X-16.527Y56.038R10.N176X17.489Y60.317R10. N178G1X-19.628Y64.836 N180G0Z10. N190G3X-22.249Y47.R10. N192G1X22.249 N194G2X47.Y22.249R52. N196G1Y-22.249
N198G2X22.249Y-

```
N204G1Y22.249
N206G2X-
22.249Y47.R52.
N208G3X-
16.527Y56.038R10.
N210X-
17.489Y60.317R10.
N212G1X-
19.628Y64.836
N214G0Z10.
N216X-
32.249Y6
2.
N218Z5.
N220G
1Z-
32.667
N222Y
5 7 .
N224G3X-
22.249Y47.R10.
N226G1X22.249
N228G2X47.Y22.
249R52.N230G1Y
-22.249
N232G2X22.249Y
47.R52.N234G1X-
22.249 N236G2X-
47.Y-22.249R52.
N238G1Y22.249
N240G2X-
22.249Y47.R52.
N242G3X-
16.527Y56.038R10.
N244X-
17.489Y60.317R10.
N246G1X-
19.628Y64.836
N248G0Z10.
N250X-
32.249Y6
2.
N252Z5.
N254G
1Z-
4 1 . 3 3 3
N256Y
57.
N258G3X-
22.249Y47.R10.
N260G1X22.249
N262G2X47.Y22.
249R52.N264G1Y
-22.249
N266G2X22.249Y
```

```
N300G2X22.249Y-47.R52.
N302G1X-22.249
N304G2X-47.Y-22.249R52.
N306G1Y22.249
N308G2X-22.249Y47.R52.
N310G3X-
16.527Y56.038R10.N312X-
17.489Y60.317R10.
N314G1X-19.628Y64.836
N316G0Z20.
N318M5
N320G91G28Z0.M9
N322M01
(6. FLAT ENDMILL TOOL - 1 DIA. OFF. -
41 LEN.- 1 DIA. - 6.)
N324T1M6
N326G0G90X-15.384Y-20.65A0.S50M5
N328G43H1Z20.M8
N330Z5.
N332G1Z-5.333F1.5
N334G2X-25.313Y0.R26.438
N336X-1.125Y24.188R24.188
N338X23.063Y0.R24.188
N340X1.125Y-21.938R21.938
N342X-20.813Y0.R21.938
N344X-1.125Y19.688R19.688
N346X18.563Y0.R19.688
N348X1.125Y-17.438R17.438
N350X-16.313Y0.R17.438
N352X-1.125Y15.188R15.188
N354X14.063Y0.R15.188
N356X1.125Y-12.938R12.938
N358X-11.813Y0.R12.938
N360X-1.125Y10.688R10.688
N362X9.563Y0.R10.688
N364X1.125Y-8.438R8.438
N366X-7.313Y0.R8.438
N368X-1.125Y6.188R6.188
N370X5.063Y0.R6.188
N372X1.125Y-3.938R3.938
N374X-2.813Y0.R3.938
N376X-1.125Y1.688R1.688
N378X.563Y0.R1.688
N380G0Z10.
N382X26.
N384Z5.
N386G1Z-5.333
N388G3X0.Y26.R26.
N390X-
26.Y0.R26.N392X0.
Y-26.R26.
N394X26.Y0.R26.
N396G0Z10.
N398X-15.384Y-20.65
```

N406X-
1.125Y24.188R24.188

N408X23.063Y0.R24.188
N410X1.125Y-
21.938R21.938 N412X-
20.813Y0.R21.938 N414X-
1.125Y19.688R19.688

N416X18.563Y0.R19.688
N418X1.125Y-
17.438R17.438 N420X-
16.313Y0.R17.438 N422X-
1.125Y15.188R15.188

N424X14.063Y0.R15.188
N426X1.125Y-
12.938R12.938 N428X-
11.813Y0.R12.938 N430X-
1.125Y10.688R10.688

N432X9.563Y0.R10.688
N434X1.125Y-
8.438R8.438 N436X-
7.313Y0.R8.438 N438X-
1.125Y6.188R6.188

N440X5.063Y0.R6.188
N442X1.125Y-
3.938R3.938 N444X-
2.813Y0.R3.938 N446X-
1.125Y1.688R1.688

N448X.563Y0.R1.688
N450G0Z10.
N452X26.
N454Z5.
N456G1Z-
12.667

N458G3X0.Y26.R
26. N460X-
26.Y0.R26.N462X
0.Y-26.R26.

N464X26.Y0.R26.
N466G0Z10.
N468X-15.384Y-
20.65 N470Z5.

N472G1Z-20.
N474G2X-
25.313Y0.R26.438 N476X-
1.125Y24.188R24.188

N478X23.063Y0.R24.188
N480X1.125Y-
21.938R21.938 N482X-
20.813Y0.R21.938 N484X-
1.125Y19.688R19.688

N486X18.563Y0.R19.688
N488X1.125Y-
17.438R17.438 N490X-
16.313Y0.R17.438 N492X-
1.125Y15.188R15.188

N494X14.063Y0.R15.188

N496X1.125Y-12.938R12.938 N498X-11.813Y0.R12.938
N500X-1.125Y10.688R10.688
N502X9.563Y0.R10.688
N504X1.125Y-8.438R8.438
N506X-7.313Y0.R8.438
N508X-1.125Y6.188R6.188
N510X5.063Y0.R6.188
N512X1.125Y-3.938R3.938
N514X-2.813Y0.R3.938

N516X-1.125Y1.688R1.688
N518X.563Y0.R1.688
N520G0Z10.
N522X26.
N524Z5.
N526G1Z-20.
N528G3X0.Y26.R26.
N530X-
26.Y0.R26.N532X0.

Y-26.R26.
N534X26.Y0.R26.
N536G0Z10.
N538Z20.
N540X-6.047Y9.487
N542Z5.
N544G1Z-6.
N546G2X-1.125Y10.688R10.688
N548X9.563Y0.R10.688
N550X1.125Y-8.438R8.438
N552X-7.313Y0.R8.438
N554X-1.125Y6.188R6.188
N556X5.063Y0.R6.188
N558X1.125Y-3.938R3.938
N560X-2.813Y0.R3.938
N562X-1.125Y1.688R1.688
N564X.563Y0.R1.688
N566G0Z10.
N568X11.5
N570Z5.
N572G1Z-
6.N574G3X0.Y11.5R11
. 5 N576X-
11.5Y0.R11.5

N578X0.Y-11.5R11.5
N580X11.5Y0.R11.5
N582G0Z10.
N584X-6.047Y9.487
N586Z5.
N588G1Z-14.
N590G2X-1.125Y10.688R10.688
N592X9.563Y0.R10.688
N594X1.125Y-8.438R8.438
N596X-7.313Y0.R8.438
N598X-1.125Y6.188R6.188
N600X5.063Y0.R6.188
N602X1.125Y-3.938R3.938
N604X-2.813Y0.R3.938
N606X-1.125Y1.688R1.688
N608X.563Y0.R1.688
N610G0Z10.
N612X11.5
N614Z5.
N616G1Z-14.
N618G3X0.Y11.5R11.5

N620X-11.5Y0.R11.5 N622X0.Y-
11.5R11.5 N624X11.5Y0.R11.5

N626G0Z10. N628X
6.047 Y
9.487

N630Z
5.

N632G1Z-22.
N634G2X-
1.125Y10.688R10.6

88
N636X9.563Y0.R1
0.688

N638X1.125Y-
8.438R8.438

N640X-
7.313Y0.R8.438

N642X-
1.125Y6.188R
6.188

N644X5.063
Y0.R6.188
N646X1.125
Y-
3.938R3.938

N648X-
2.813Y0.R3.9

38 N650X-
1.125Y1.688R
1.688

N652X.563Y
0.R1.688

N654G0Z10.6
56X11.5
N658Z5.
N660G1-
22.N662G

3X0.Y11.
5R11.5
N664X-
11.5Y0.R
11.5

N666X0.
Y11.5R1.
5
N668X11.
5Y0.R115
N670G0Z
10.

N672X
-
6.047 Y
9.487

N6745.
N676G1Z-30.
N678G2X-
1.125Y10.688R10.688

N680X9.563Y0.R10.688
N682X1.125Y-8.438R8.438
N684X-7.313Y0.R8.438
N686X-1.125Y6.188R6.188
N688X5.063Y0.R6.188
N690X1.125Y-3.938R3.938
N692X-2.813Y0.R3.938
N694X-1.125Y1.688R1.688
N696X.563Y0.R1.688
N698G0Z10.
N700X11.5
N702Z5.
N704G1Z-
30.N706G3X0.Y11.5R1
1.5 N708X-
11.5Y0.R11.5

N710X0.Y-11.5R11.5
N712X11.5Y0.R11.5
N714G0Z10.
N716Z20.
N718G98G81X28.284Y28.284Z-50.R5.F1.5
N720X-28.284
N722Y-28.284
N724X28.284
N726G80
N728M5
N730G91G0G28Z0.M9
N732G90
N734M30

## Exercise 2

Aim : To machine the model as per thesketch.


## Procedure:

## Step 1

The usual modification is that is done after initializing the master cam is the alteration of the available screen ie modification of grid size and as per the requirement of user screen,

Choose-mainmenu $\rightarrow$ Screen $\rightarrow$ Configure $\rightarrow$ Current Configuration File Select- Mill9.Mcfg(metric)
Choose-mainmenu $\rightarrow$ Screen $\rightarrow$ Nextmenu $\rightarrow$ Sel.Grid
Select-Active Grid, Visible Grid, Spacing $x=1$ and $y=1$, Grid Size $=110$,
Origin $x=0, y=0$ and choose suitable for Grid.

## Step 2

1. To create inner and outercircles.

- Choose-mainmenu $\rightarrow$ Create $\rightarrow \mathrm{Arc} \longrightarrow$ circpt + dia.
- Typediameter100 $\rightarrow$ Enter
- Selectorigin
- Press Esc. And reselectcircpt+dia
- Enter diameter85
- Selectorigin
- Press Esc. And reselectcircpt+dia
- Repeat same procedure for diameter 93 mm
- Selectorigin
- Press Esc. to exit circle function Press Esc. And reselectcircpt+dia
- Repeat same procedure for pitch circle diameter 3 mm
- Selectquadrant
- Press Esc. to exit circlefunction
- Choose it screenmenu.

2. Copy and rotate the 3 mmcircle

- Choose-mainmenu $\longrightarrow$ Xform $\longrightarrow$ Rotate
- Select anywhere on 3mmcircle
- Choosedone.
- Selectorigin.
- Select copy, enter the values. No of steps 11 and angle is $30^{0}$
- Choose OK in the dialogue box remaining slots forcreated.

3. To create construction of rectangle /Square

- Choose-mainmenu $\rightarrow$ Create $\rightarrow$ Rectangle $\rightarrow 1$ point
- Enter width 150 and height 150 ( bcz. given figure is square) pressOK
- Selectorigin,
- Press Esc.
- Enter width 140 and height 140 ( bcz. given figure is square) pressOK
- Selectorigin
- Press Esc to exit Rectangle function.

4. To create construction oflines

- Choose-mainmenu $\rightarrow$ Create $\rightarrow$ Line $\rightarrow$ Endpoint
- Enter the first co-ordinate Midpoint of horizontal line of 140 mmSquare
- Enter the Second co-ordinate Midpoint of Vertical line of 140 mmSquare
- Enter the same method for other threesides
- Press Esc to exit linefunction

5. To create construction ofline

- Choose-mainmenu $\rightarrow$ Create $\rightarrow$ Line $\longrightarrow$ Polar
- Enter the first co-ordinateorigin
- Enter angle in degree $45^{0}$
- Enter the line length70
- Press Esc to exit linefunction

6. To create inner 10 mm and 15 mm diametercircles

- Choose-mainmenu $\rightarrow$ Create $\rightarrow$ Arc $\longrightarrow$ circpt+dia.
- Typediameter10 $\rightarrow$ Enter
- Select end point of inclinedline.
- Press Esc. And reselectcircpt+dia
- Choose-mainmenu $\rightarrow$ Xform $\rightarrow$ Offset
- Choose operation $=$ copy, No. of steps $=1 \&$ Offset distance $=2.5 \mathrm{~mm}$
- Select 10 mm diacircle
- Click outside the circle ( Direction Inside or Outside)
- ThenoK

7. Copy and rotate theCircle

- Choose-mainmenu $\rightarrow$ Xform $\rightarrow$ Rotate
- Select anywhere on 10 \& 15 mm diametercircle
- Choose done. Selectorigin.
- Select copy, enter the values. No of steps 3 and angle is $90^{0}$
- Choose OK in the dialogue box remaining 3 circles forcreated.


## Now your drawing is ready for operations

The following operations to be conduct Using the geometry
Facing, Contours, Pocketing and Drilling

## Step 3

1. Make job setup for givengeometry

- Choose-mainmenu $\rightarrow$ Toolpath $\rightarrow$ Jobsetup
- Enter the $\mathrm{X}=155 \mathrm{Y}=155$ and $\mathrm{Z}=65 \mathrm{mmrespectively}$
- Select Display Stack and Fit toScreen.
- Out side the drawing doted boundary red line isdisplayed

2. Another option for jobsetup

- Choose-mainmenu $\rightarrow$ Toolpath $\rightarrow$ Job setup
- Select stock origin $(0,0)$
- select the stockcorners.
- Enter the value of $Z=65(+$ value $)$.
- Select the display stock checkbox.
- Select fit stock checkbox.
- Choose OK the stock should be enclosed by red dottedline.


## Step 4

1. Create tool path forFacing

- Choose-mainmenu $\rightarrow$ Toolpath $\rightarrow$ Face
- Select start point for the chain at periphery of thefigure.
- Choosedone.
- Right click in the tool display area and select a 10 mm flat endmill
- from the toollibrary.
- Right click on the tool display , go to tool type select face milltool,
- Select the facing parameters. Give Depth of cut -3 mm ( -negative)
- Select depth Cuts, Give Rough Cut 3, Finishing cut 1No. Finish Step0.5
- Choose OK twice in the tool path should be showingfigure.

2. Create tool path for Contour $1,2 \& 3$

- Choose-mainmenu $\rightarrow$ Toolpath $\rightarrow$ Contour
- Select 100 mm diametercircle.
- Choosedone.
- Right click in the tool display area and select a 12 mm flat end mill from the toollibrary.
- Select the contour parameters, Give Depth of cut -3mm - negative, ( Cumulative ie $3+3=6 \mathrm{~mm}$ )
- Use Multi passes and Depth Cutsoptions.
- Choose OK twice in the tool path should be showingfigure.
- Repeat same procedure for other contoursfor
- Rambo's Square with depth 3 mm , ( Cumulative ie $3+3+3=9 \mathrm{~mm}$ )
- Filleted Square with depth 3 mm , ( Cumulative ie $3+3+3+3=12 \mathrm{~mm}$ )

Create tool path for Contour4

- Choose-mainmenu $\rightarrow$ Toolpath $\rightarrow$ Contour
- Select start point for the chain at position 1. (outer periphery of the square)
- Choosedone.
- Right click in the tool display area and select a 5 mm flat end mill from the toollibrary.
- Select the contour parameters, Give Depth of cut -65mm (- negative), Use Multi passes, Depth Cuts and Lead in/outoptions.
- Choose OK twice in the tool path should be showingfigure.

3. Create tool path for pocket1

- Choose-mainmenu $\rightarrow$ Toolpath $\rightarrow$ Pocket
- Select the 86 mm diametercircle.
- Choosedone.
- Right click in tool display area and select 8 mm flat end mill fromtool
- library.
- Enter pocketing parameters and note that the depth shouldbe negative say-65.
- Choose OK the tool path should look like the picture pattern. 4 Create tool path for pocket2
- Choose-mainmenu $\rightarrow$ Toolpath $\longrightarrow$ Pocket
- Select first 15 mm diametercircle.
- Choosedone.
- Right click in tool display area and select 3 mm flat end mill from toollibrary.
- Enter pocketing parameters and note that the depth shouldbe negative say-15.
- Choose OK the tool path should look like the picturepattern.

5. Create tool path for Drilling 1 ( 10 mm dia )

- Choose-mainmenu $\rightarrow$ Toolpath $\rightarrow$ Drill
- Select Entities Choose 10 mm diameter circles one byone.
- Choose done. Tool path is generated, Choose once againdone
- Right click in the tool display area and select a 10 mm drill mill from thetool library.
- Select the drill parameters and note that the depth should be negative-68.
- Choose-Esc

Create tool path for Drilling 2 ( 03 mm dia )

- Toolpath Drill
- Select Entities Choose 3 mm diameter circles one byone.
- Choose done. Tool path is generated, Choose once againdone
- Right click in the tool display area and select a 3 mm drill mill from the tool library.
- Select the drill parameters and note that the depth should be negative-30.
- Choose OK twice in the tool path should be showingfigure


## Step 5

Tool path Generator

- Choose-mainmenu $\rightarrow$ Operation
- A dialogue box appears select all, regeneratepath
- When the tool path generation completes the dialogue boxdisplay
- chooseverify,
- Verifytrue solid deluge box is displayed select run ( machine) item.
- Verify true solid deluge box go to Configure

Select Job Box orCylinder,
Select use job setup values for present file operations
In Display control, use Simulation speed / qualityvariations
In miscellaneous select use true solid \& Cutter compensation in control In Toll select Solid tool.


Operation management of Tool Path


Configuration of Tool path
If your model is square/Rectangle go to shape, select box, suppose your model is Cylindrical go to shape, select cylinder


## Step 6

Post processor NC Program

- Choose-mainmenu $\rightarrow$ Operation
- A dialogue box appears select all regenerate path, choosepost
- Show path (desktop) for saving post processor Notepadfile.



## Exercise No. 3

## SPROCKET

Aim : To machine the model as per thesketch.


## Procedure:

## Step 1

The usual modification is that is done after initializing the master cam is the alteration of the available screen ie modification of grid size and as per the requirement of user screen,

Choose-mainmenu $\rightarrow$ Screen $\rightarrow$ Configure $\rightarrow$ Current Configuration File Select- Mill9.Mcfg(metric)
Choose-mainmenu $\rightarrow$ Screen $\rightarrow$ Nextmenu $\rightarrow$ Sel. Grid Select-Active Grid, Visible Grid, Spacing $x=1$ and $y=1$, Grid Size $=200$, Origin $\mathrm{x}=0, \mathrm{y}=0$ and choose suitable for Grid.

## Step 2

To create inner and outer circles.

- Choose-mainmenu $\rightarrow$ Create $\rightarrow$ Arc $\rightarrow$ circpt +dia.
- Typediameter $188 \rightarrow$ Enter
- Selectorigin
- Press Esc. And reselectcircpt+dia
- Enter diameter174
- Selectorigin
- Press Esc. And reselectcircpt+dia
- Repeat same procedure for pitch circle diameter 12 mm
- Selectquadrant
- Press Esc. to exit circlefunction
- Choose it screenmenu.
- Create arc 3points
- First point - intersection of 12 mm \& 188 mm diacircles.
- Second point - quadrant of 174 mmcircle
- Third point is again opposite side of First point - intersection of 12 mm \& 188 mm diacircles.
- Delete 12 mmcircle

Copy and rotate the 3 point arc

- Choose-mainmenu $\longrightarrow$ Xform $\longrightarrow$ Rotate
- Select anywhere on 3 pointarc
- Choosedone.
- Selectorigin.
- Select copy, enter the values. No of steps 44 and angle is $360 / 45^{0}$
- Choose OK in the dialogue box remaining arcs forcreated.

Trimming unwanted portion of teeth

- Choose-mainmenu $\rightarrow$ Modify $\rightarrow$ Trim $\rightarrow$ 3entities
- Select 1 Entity Select 3 point arc inside the 188 mm dia circle 2

Entity adjacent 3 point arc inside the 188 mm diacircle
3 Entity 188 mm dia circle in between the two 3point arcs.

Copy and rotate the 188 mm dia circle in between the two 3point arcs

- Choose-mainmenu $\rightarrow$ Xform $\longrightarrow$ Rotate
- Select anywhere on arc in between the two 3pointarcs
- Choosedone.
- Selectorigin.
- Select copy, enter the values. No of steps 44 and angle is $360 / 45^{\circ}$
- Choose OK in the dialogue box remaining arcs forcreated.
- Choose-mainmenu $\quad$ Treate Arc $\rightarrow$ ircpt $\rightarrow$ dia.
- Typediameter140 $\rightarrow$ Enter
- Selectorigin
- Repeat same procedure for diameter 70 mm
- Selectorigin

To create construction ofline

- Choose-mainmenu $\rightarrow$ Create $\rightarrow$ Line $\rightarrow$ multiline
- Enter the first point isorigin
- Enter the Second point is quadrant of 140 mm diacircle.
- Press Esc to exit linefunction
- Go to xform offset select the line offset distance 10 mm
- Repeat the same by 15 mm
- Choose-mainmenu $\rightarrow$ Create $\rightarrow$ Line $\rightarrow$ multiline
- Enter the first point is intersection of 140 mmcircle and 10 mm offsetline
- Enter the Second point is intersection of 70 mm circle and 15 mm offset line.
- Delete both offsetlines
- Go to fillet select radius 10 mm
- Enter the first inclinedline
- Enter the Second 140 mm diacircle.
- Same steps repeat for 70 mm diacircle

To create construction of line

- Choose-mainmenu $\rightarrow$ Create $\longrightarrow$ Line $\longrightarrow$ Polar
- Enter the first co-ordinateorigin
- Enter angle in degree $45^{0}$
- Enter the line length 145

Trimming unwanted portion of 140/70 dia circle

- Choose-mainmenu $\rightarrow$ Modify $\rightarrow$ Trim $\longrightarrow$ 3entities
- Select 1 Entity Select 140 mm diacircle

2 Entity Select 70 mm diacircle
3 Entity $45^{\circ}$ line in between 140 and 70 diacircles.
Mirror

- Choose-mainmenu $\rightarrow$ Xform $\rightarrow$ Mirror
- Select chain, anywhere onfillet/line/arc
- End here, done , Mirror aboutline
- Choosedone.

Copy and rotate the mirrored item

- Choose-mainmenu $\rightarrow$ Xform $\longrightarrow$ Rotate
- Select chain, Endhere,
- Choosedone.
- Selectorigin.
- Select copy, enter the values. No of steps 3 and angle is $90^{\circ}$
- Choose OK in the dialogue box remaining arcs forcreated.

To create inner 55 mm and 95 mm diametercircles

- Choose-mainmenu $\rightarrow$ Create $\rightarrow$ Arc $\longrightarrow$ circpt+dia.
- Typediameter $55 \rightarrow$ Enter
- Go tobackup,
- circpt +dia95mm
- Press Esc., and reselectcircpt+dia
- ThenoK

To create inner 08 mm diameter circles

- Choose-mainmenu $\rightarrow$ Create $\rightarrow$ Line $\rightarrow$ Polar
- Enter the first co-ordinateorigin
- Enter angle in degree $0^{0}$
- Enter the line length40
- Press esc to exit line function
- Choose-mainmenu $\rightarrow$ Create $\rightarrow$ Arc $\longrightarrow$ circpt + dia 8mm enter End point go and Select of theline

Copy and rotate the Circle

- Choose-mainmenu $\rightarrow$ Xform $\rightarrow$ Rotate
- Select anywhere on 8 mm diametercircle
- Choose done. Selectorigin.
- Select copy, enter the values. No of steps 3 and angle is $90^{\circ}$
- Choose OK in the dialogue box remaining 3 circles forcreated.


## Now your drawing is ready for operations

The following operations to be conduct using the geometry

## Facing, Contours, Pocketing and Drilling

## Step 3

1. Make job setup for givengeometry

- Choose-mainmenu $\rightarrow$ Toolpath $\longrightarrow$ Jobsetup
- Enter the $\mathrm{X}=190 \mathrm{Y}=190$ and $\mathrm{Z}=11 \mathrm{mmrespectively}$
- Select Display Stack and Fit toScreen.
- Out side the drawing doted boundary red line isdisplayed

2. Another option for jobsetup

- Choose-mainmenu $\rightarrow$ Toolpath $\rightarrow$ Job setup
- Select stock origin $(0,0)$
- Select the stock corners.
- Enter the value of $\mathrm{Z}=11$ ( + value ).
- Select the display stock checkbox.
- Select fit stock checkbox.
- Choose OK the stock should be enclosed by red dottedline.


## Step 4

Create tool path for Facing

- Choose-mainmenu $\rightarrow$ Toolpath $\rightarrow$ Face
- Select start point for the chain at periphery (Teeth) of thefigure.
- Choosedone.
- Right click in the tool display area and select a 10 mm flat end mill from the toollibrary.
- Right click on the tool display , go to tool type select face milltool,
- Select the facing parameters. Give Depth of cut -3 mm ( -negative)
- Select depth Cuts, Give Rough Cut 2, Finishing cut 1No. Finish Step1
- Choose OK twice in the tool path should be showingfigure.

Create tool path for Contour

- Choose-mainmenu $\rightarrow$ Toolpath $\rightarrow$ Contour
- Select start point for the chain at periphery (Teeth) of thefigure.
- Choosedone.
- Right click in the tool display area and select a 3 mm flat end mill from the toollibrary.
- Select the contour parameters, Give Depth of cut -8 mm - negative, ( Cumulative ie $3+8=11 \mathrm{~mm}$ )
- Use 3 Multi passes with spacing 2 mm and Depth Cuts options. Select depth Cuts, Give Rough Cut 3, Finishing cut 2 No. Finish Step1
- Choose OK twice in the tool path should be showingfigure.

Create tool path for pocket 1,2,3,4 and 5

- Choose-mainmenu $\rightarrow$ Toolpath $\rightarrow$ Pocket
- Select the 55 mm diameter circle, another 4 slotspacket.
- Choosedone.
- Right click in tool display area and select 5 mm flat end mill fromtool
- library.
- Enter pocketing parameters and note that the depth shouldbe negative say-8.
- Choose OK the tool path should look like the picturepattern.

Create tool path for pocket 95 mm dia

- Choose-mainmenu $\rightarrow$ Toolpath $\rightarrow$ Pocket
- Select first 95 mm diametercircle.
- Choosedone.
- Right click in tool display area and select 10 mm flat end mill from toollibrary.
- Enter pocketing parameters and note that the depth shouldbe negative say--6.
- Choose OK the tool path should look like the picturepattern.

Create tool path for Drilling 1 ( 08 mm dia )

- Choose-mainmenu $\rightarrow$ Tool path $\rightarrow$ Drill
- Select Entities Choose 8 mm diameter 4 circles one byone.
- Choose done. Tool path is generated, Choose once againdone
- Right click in the tool display area and select a 8 mm drill mill from the tool library.
- Select the drill parameters and note that the depth should be negative -10 .
- Choose-Esc



## Exercise No. 4

## Gear

Aim : To machine the model as per thesketch.


## Procedure:

## Step 1

The usual modification is that is done after initializing the master cam is the alteration of the available screen ie modification of grid size and as per the requirement of user screen,

Choose-mainmenu $\rightarrow$ Screen $\rightarrow$ Configure $\rightarrow$ Current Configuration File Select- Mill9.Mcfg(metric)
Choose-mainmenu $\rightarrow$ Screen $\rightarrow$ Nextmenu $\rightarrow$ Sel. Grid
Select-Active Grid, Visible Grid, Spacing $x=1$ and $y=1$, Grid Size $=100$,
Origin $\mathrm{x}=0, \mathrm{y}=0$ and choose suitable for Grid.

## Step 2

To create inner and outer circles.
$\rightarrow$ Choose - Create Arc circpt + dia.

- Typediameter $72 \rightarrow$ Enter
- Selectorigin
- Press Esc. And reselectcircpt+dia
- Go tobackup
- And reselectcircpt+dia
- Enter diameter56
- Selectorigin
- Press Esc. And reselectcircpt+dia
- Then create one pitch enter circle for diameter 64 mm
- Selectorigin
- Press Esc. And reselectcircpt+dia
- Repeat same procedure for pitch circle diameter 7 mm
- Select quadrant of 25 mmdia
- Press Esc. to exit circlefunction

To create construction ofline

- Choose-mainmenu $\rightarrow$ Create $\rightarrow$ Line $\rightarrow$ multiline
- Enter the first point isorigin
- Enter the Second point is quadrant of 72 mm diacircle.
- Press Esc to exit linefunction
- Go to xform offset select the line offset distance 1.5 mm
- Repeat the same by 3.0 mm
- Again go to xform offset select the line offset distance 0.75 mm (inbetween line $1.5-3)$

Choose, menu, create,Arc

- Create arc 3points

1


- First point - intersection of 72 mm circle \& offset line 3 mm .
- Second point - intersection of 64 mm circle \& $1.5+0.75 \mathrm{~mm}$ offset linemm.
- Third point - intersection of 56 mm circle \& offset line3mm.

Same procedure is repeat opposite side

Delete all the vertical line and 64 mm diameter circle

Trimming unwanted portion of teeth

- Choose-mainmenu $\rightarrow$ Modify $\rightarrow$ Trim $\longrightarrow$ 2entities
- Select 1 Entity Select 3 point arc (No.3) inside the 56 mm diacircle

2 Entity adjacent 3 pointarc(No.1) inside the 72 mm diacircle


Fillet

- Choose-mainmenu $\rightarrow$ Create $\rightarrow$ Fillet
- Radius, take 0.5 mm ,enter
- Select item 1 arc and dia 72circle
- Repeat the procedure item 3 arc and dia 56 circle

Mirror

- Choose-mainmenu $\rightarrow$ Xform $\longrightarrow$ Mirror
- Select four 4 entities one by one 1) fillet, 2) item No 3 arc, 3) item No 1 arc and
4)fillet
- End here, done, Mirror about line or yaxis
- Choosedone.

Trimming unwanted portion of teeth

- Choose-mainmenu $\rightarrow$ Modify $\rightarrow$ Trim $\rightarrow 2$ entities

$$
\begin{array}{ll}
\text { Select } & 1 \text { Entity Select fillet of theteeth } \\
& 2 \text { Entity Select } 72 \mathrm{~mm} \text { dia circle inside portion of teeth }
\end{array}
$$

Copy and rotate the gear teeth

- Choose-mainmenu $\rightarrow$ Xform $\longrightarrow$ Rotate
- Select gearteeth
- Choosedone.
- Selectorigin.
- Select copy, enter the values. No of steps 15 and angle is $360^{\circ} / 16$
- Choose OK in the dialogue box remainingteeths.

Trimming unwanted portion of teeth

- Choose-mainmenu $\rightarrow$ Modify $\rightarrow$ Trim $\rightarrow 3$ entities

| Select | 1 Entity Select fillet of the teeth (dia56) |
| :--- | :--- |
|  | 2 Entity Select opposite fillet of the teeth (dia56) |
|  | 3 Entity Select 56 mm dia circle in between twofillet |

Copy and rotate the dedandam arc ie 56 dia circle

- Choose-mainmenu $\rightarrow$ Xform $\longrightarrow$ Rotate
- Select 56 mm dia circle in between twofillet
- Choosedone.
- Selectorigin.
- Select copy, enter the values. No of steps 15 and angle is $360^{\circ} / 16$
- Choose OK in the dialogue box remainingteeths.


## Now your drawing is ready for operations

The following operations to be conduct using the geometry

## Facing, Contours, Pocketing and Drilling

## Step 3

1. Make job setup for givengeometry

- Choose-mainmen $\longrightarrow$ Toolpath $\longrightarrow$ Jobsetup
- Enter the $\mathrm{X}=75 \mathrm{Y}=75$ and $\mathrm{Z}=33$ mmrespectively
- Select Display Stack and Fit toScreen.
- Out side the drawing doted boundary red line isdisplayed


## Step 4

Create tool path for Facing

- Choose-mainmenu $\rightarrow$ Toolpath $\rightarrow$ Face
- Select start point for the chain at periphery (Teeth) of thefigure.
- Choosedone.
- Right click in the tool display area and select a 10 mm flat end mill from the toollibrary.
- Right click on the tool display , go to tool type select face milltool,
- Select the facing parameters. Give Depth of cut -3 mm ( -negative)
- Select depth Cuts, Give Rough Cut 2, Finishing cut 1No. Finish Step1
- Choose OK twice in the tool path should be showingfigure.

Create tool path for Contour

- Choose-mainmenu $\rightarrow$ Toolpath $\rightarrow$ Contour
- Select start point for the chain at periphery (Teeth) of thefigure.
- Choosedone.
- Right click in the tool display area and select a 2 mm flat end mill from the toollibrary.
- Select the contour parameters, Give Depth of cut -33 mm - negative, ( Cumulative ie $3+30=33 \mathrm{~mm}$ )
- Use 5 Multi passes with spacing 1 mm and Depth Cuts options. Select depth Cuts, Give Rough Cut 4, Finishing cut 3 No. Finish Step2
- Choose OK twice in the tool path should be showingfigure.

Create tool path for pocket

- Choose-mainmenu $\rightarrow$ Toolpath $\rightarrow$ Pocket
- Select the 25 mm diameter circle,
- Choosedone.
- Right click in tool display area and select 5 mm flat end mill from toollibrary.
- Enter pocketing parameters and note that the depth shouldbe negative say-33.
- Choose OK the tool path should look like the picturepattern.

Create tool path for Drilling 1 ( 07 mm dia )

- Choose-mainmenu $\rightarrow$ Toolpath $\rightarrow$ Drill
- Select Entities Choose 8 mmdiameter.
- Choose done. Tool path is generated, Choose once againdone
- Right click in the tool display area and select a 7 mm drill mill from the tool library.
- Select the drill parameters and note that the depth should be negative -35 .
- Choose-Esc



## Exercise 5

## CAM

Aim : To machine the model as per thesketch.


## Exercise No. 6

## Plate

Aim : To machine the model as per thesketch.



Exercise No. 7
Gear


