SOFTWARE DESIGN LABORATORY

1. Expert Design Pattern

Problem:
What is the most basic principle by which responsibilities are assigned in object-oriented design?

Solution:

Assign a responsibility to the class that has the information necessary to fulfil the responsibility.
A Design Model may define hundreds or thousands of software classes, and an application may require
hundreds or thousands of responsibilities to be fulfilled. During object design, when the interactions
between objects are defined, we make choices about the assignment of responsibilities to software classes.
If we've chosen well, systems tend to be easier to understand, maintain, and extend, and our choices afford
more opportunity to reuse components in future applications.

Structure:

C Client - client - informationexpeg_;; InformationExpert

Participants:

Information Expert: This is the class, which has the information to fulfill the responsibility. We assign
the responsibility to this class to accomplish the behavior.

Client: The class which will be using the InformationExpert class.

Collaboration:

= lInteractionl

L :Client ! :InformationExpert

1: sendMessege

SOFTWARE DESIGN LABORATORY

A Point Of Sale (POS) system is a computerized application used (in part) to record sales and handle
payments; it is typically used in a retail store. It includes hardware components such as a computer and bar
code scanner, and software to run the system. It interfaces to various service applications, such as a third-
party tax calculator and inventory control.

Furthermore, we are creating a commercial POS system that we will sell to different clients with disparate
needs in terms of business rule processing. Each client will desire a unique set of logic to execute at
certain predictable points in scenarios of using the system, such as when a new sale is initiated or when a
new line item is added. Therefore, we will need a mechanism to provide this flexibility and customization.

The POS will be calculating the total sales at any given point of time.

Answer:

Assume we are just starting design work and there is no, or a minimal, Design Model. Therefore, we look
to the Domain Model for information experts; perhaps the real-world Sale is one. Then, we add a software
class to the Design Model similarly called Sale, and give it the responsibility of knowing its total,

expressed with the method named getTotal. This approach supports low representational gap in which the
software design of objects appeals to our concepts of how the real domain is organized.

To examine this case in detail, consider the partial Domain Model in following diagram.

Sale
time
1
Contains
1 *
| Product
Sales 1 Description
Lineltem Described-by
' description
guantity price
) itemiD

What information do we need to determine the grand total? We need to know about all the SalesLineltem
instances of a sale and the sum of their subtotals. A Sale instance contains these; therefore, by the
guideline of Information Expert, Sale is a suitable class of object for this responsibility; it is an
information expert for the work.

SOFTWARE DESIGN LABORATORY

To fulfill the responsibility of knowing and answering its subtotal, a SalesLineltem has to know the
product price.

The ProductDescription is an information expert on answering its price; therefore, SalesLineltem sends it
a message asking for the product price.

In conclusion, to fulfill the responsibility of knowing and answering the sale's total, we assigned three
responsibilities to three design classes of objects as follows.

Design Class Responsibility
Sale knows sale total
SalesLineltem knows line item subtotal

ProductDescription | knows product price

Usecase Diagram:

- sale
- client 1 Sale
- clignt
1

=product description

Client
1

Product Description

Pattern instance:

«Pattern Instance»
“»Expert

Expert
[nformationExpert [*] : & %:Sale SalesLineltem ProductDiscription
Client [1] : & <::SaleCounter

SOFTWARE DESIGN LABORATORY

Class diagram:

| sale
3 ProductDiscription
| G total : float VE _ o
3 getTotal () Eg price : float
&2 getPrice ()
1
+ Sale + ProductDiscription

1 + SaleCounter

+ SaleColiy %!IeCountbr 1

| saleCounter

| salesLineltem

[quantity : int
> getSubTotal ()

+ SalesLineltem
1

SOFTWARE DESIGN LABORATORY

Sequence Diagram:

]Interaction1
|| saleCounter:SaleCounter = sale:Sale] salesLineltem:SalesLineltem ! productDiscription:ProductDiscription

1: getTotal

1.1: getSubTotal

1.2: getPrice

SOFTWARE DESIGN LABORATORY

Communication diagram:

= lInteraction1

saleCounter:SaleCounter

1: getTotal

sale:Sale

1.2: getPrice

1.1: getSubTotal

productDiscription:ProductDiscription salesLineltem:SalesLineltem

SOFTWARE DESIGN LABORATORY

Java Code:

SaleCounter.java:

public class SaleCounter
{
public Sale Sale;
public SalesLineltem SalesLineltem;
public ProductDiscription ProductDiscription;
public static void main(String []Jargs
{
float total;
Sale s=new Sale();
total=s.getTotal();
System.out.printin(" Total sale is :" + total);

}

Sale.java:

public class Sale
{
public SaleCounter SaleCounter;
private float total,
public float getTotal()
{
ProductDiscription pd=new ProductDiscription();
SalesLineltem sli=new SalesLineltem();
total = (pd.getPrice()* sli.getSubTotal());
return total;

}

SalesLineltem.java:

public class SalesLineltem

{

public SaleCounter SaleCounter;
private int quantity=100;

public int getSubTotal()

{

¥

return quantity;

SOFTWARE DESIGN LABORATORY

ProductDiscription.java:

public class ProductDiscription

{
public SaleCounter SaleCounter;
- private float price=43.89f;
public float getPrice()
{
return price;
}
¥
Output:

Total sale is : 4389.0

SOFTWARE DESIGN LABORATORY

2. Controller Design Pattern

1. Context / Problem:

The presentation-tier request handling mechanism must control and coordinate processing of each user
across multiple requests. Such control mechanisms may be managed in either a centralized or
decentralized manner.

2. Solution:

Use a controller as the initial point of contact for handling a request. The controller manages the
handling of the request, including invoking security services such as authentication and authorization,
delegating business processing, managing the choice of an appropriate view, handling errors, and
managing the selection of content creation strategies.

3. Structure:

Client Controller
send reques

/ \,
/ N\
<<Gerviet>» <<JSP>>
SenvetFront JSPFromt

4. Participants and Responsibilities:
The sequence diagram representing the Front Controller pattern. It depicts
how the controller handles a request.

lient Controller Dispatcher View Helper

T ; PR T

I ==L 1 1 Delegate Reqlest :

1.1.1: Forward R’e%uest

O

3.1: Process Requksl
I

T 2:Send Request |
=

2.1 Forward Requ

) - ——

L_13: Send Request L
2 F A

———

e e e 9

SOFTWARE DESIGN LABORATORY

Controller:

The controller is the initial contact point for handling all requests in the system. The controller may
delegate to a helper to complete authentication and authorization of a user or to initiate contact
retrieval.

Dispatcher:
A dispatcher is responsible for view management and navigation, managing the choice of the next

view to present to the user, and providing the mechanism for vectoring control to this resource.

Helper:
A helper is responsible for helping a view or controller complete its processing. Thus, helpers have

numerous responsibilities, including gathering data required by the view and storing this intermediate
model, in which case the helper is sometimes referred to as a value bean.

View:

A view represents and displays information to the client. The view

retrieves information from a model. Helpers support views by encapsulating
and adapting the underlying data model for use in the display

Example:
A Point Of Sale (POS) system is a computerized application used (in part) to record

sales and handle payments; it is typically used in a retail store. It includes hardware
components such as a computer and bar code scanner, and software to run the system.
It interfaces to various service applications, such as a third-party tax calculator and
inventory control.

Now from information expert pattern we know that Sale class will be calculating the
total sale at any given point of time.

Now the Controller Pattern suggests, that events coming from Ul layer should not be
directly accessing the expert classes. There should be a Controller class to control
these events.

In this example, we will use a SaleController class that will be receiving the events
from Ul and forward it to the Sale class.

Use case diagram:

Calculate Total Sales

User

SOFTWARE DESIGN LABORATORY

Activity Diagram:

oo: Activityl

Pattern Instance:

@ User Enters quantity and price of product

«Pattern Instance»

&2 System Calcualtes Total

@ System Displays Total

<> Controller
. Controller
Client [1] : = <:Client
TheController [1] : = <::SaleController
Dispatcher [0..1] : =
View [0..1] : = <:View
Helper [0..1] : &= <::Sale

SOFTWARE DESIGN LABORATORY

Class Diagram:

=l view
&2 display ()
=] client
+ View
§ getController ()
g main () + Client
1
1
+ SaleController + SaleController
] saleController
3 sale : Sale 1 1 L sale
g view : View |
#pexecute () 4 saleController + Sale | o getTotal ()
2 setSale ()
&2 setView ()
Sequence Diagram:
= lInteractionl
= client:Client = saleController:SaleController = sale:Sale = view:View

1: getController
1.1: setSale

1.2: setView

2: execute
2.1: getTotal

2.2: display

SOFTWARE DESIGN LABORATORY

Communication Diagram:

' |Interaction1

client:Client

2! execute
1.2 setView
1.1: setSale

saleController:SaleController

2.2! display

1: getController

2.1 getTotal

view:View

sale:Sale

SOFTWARE DESIGN LABORATORY

Java Code:
Sale.java:
public class Sale
{
public SaleController SaleController;
public float getTotal(int quantity, float price)
{
return quantity * price;
}
¥
View.java:
public class View
{
public SaleController SaleController;
public void display(float total)
{
System.out.printin("The Total Sale is: " + total);
}
¥

SaleController.java:

public class SaleController
{
public Client Client;
public Sale sale;
public View view;
public void execute(int quantity,float price)
{
float result = sale.getTotal(quantity, price);
view.display(result);

public void setSale(Sale sale)

{
¥

public void setView(View view)

{

this.sale = sale;

this.view = view;

SOFTWARE DESIGN LABORATORY

Client.java:

import java.util.Scanner;

public class Client

{
public SaleController SaleController;
public static SaleController getController()
{
SaleController tc = new SaleController();
Sale s=new Sale();
View v=new View();
tc.setSale(s);
tc.setView(v);
return tc;
¥
public static void main(String[] args)
{
SaleController tc = getController();
Scanner scr=new Scanner(System.in);
System.out.printin("Enter the Qunatity: ");
int quantity= scr.nextint();
System.out.printin("Enter the Price: ");
float price=scr.nextFloat();
tc.execute(quantity, price);
}
}
Output:-

Enter the quantity: 20
Enter the Price: 10
The Total Sale is: 200

SOFTWARE DESIGN LABORATORY

3. Facade Design Pattern

Intent: The Facgade Pattern provides a unified interface to a set of interfaces in a subsystem. Facade
defines a higher-level interface that makes the subsystem easier to use.

Motivation:

1) Structuring a system into subsystems helps reduce complexity

2) Subsystems are groups of classes, or groups of classes and other subsystems

3) The interface exposed by the classes in a subsystem or set of subsystems can become quite complex
4) One way to reduce this complexity is to introduce a facade object that provides a single, simplified
interface to the more general facilities of a subsystem

client classes

Facade

subsystem classes

Applicability:

Use the Facade pattern:

1) To provide a simple interface to a complex subsystem. This interface is good enough for most clients;
more sophisticated clients can look beyond the facade.

2) To decouple the classes of the subsystem from its clients and other subsystems, thereby promoting
subsystem independence and portability

Example:
You have to design a Home Theater System. The home theater system will consist of different

components like Projector, to project the movie on screen, DVD Player to play the movie, Amplifier to
control the sound effects.

For watching a movie the user starts switching on each component one by one and enjoys the movie. After
watching the movie he/she will have to switch off each device.

But now the user is fed up of this process and don’t want to start switching on each device by himself. He
wants to control all the devices using single remote so that when he wants to watch a movie he can use
this remote to start watching movie and in the end he can close all the devices by one command using
same remote.

SOFTWARE DESIGN LABORATORY

Usecase Diagram:

Shutdown Home Theater System

User

Watch movie

Pattern Instance:

zPattern Instances=
<» Facade

Facade
Facade [1]: IEI*‘?_:;HumeTheaterFacade
Subsystem [1.%: & #::amplifier DvdPlaver Projector

SOFTWARE DESIGN LABORATORY

Class Diagram:

«Subsystem»
= Amplifier
(g, description : String |
[cg, dvd : DvdPlayer
| (5§ /volume : int
&2 Amplifier ()
gon()
g off ()
2 toStriing ()

«Facade»
= HomeTheaterFacade
' 5,amp : Amplifier
(Epydvd : DvdPlayer |
| 3 HomeTheaterFacade ()
{5, watchMovie ()
4§, endMovie ()

«Subsystem»

! DvdPlayer
(58, description : String
[cg; amplifier : Amplifier
[Eg, movie : String
§2 DvdPlayer ()
gon()
g 0ff ()
£ play ()
2 stop ()
é2 toString ()

«Subsystem»
= Projector

' 5 description : String
= dvd_PIayer : DvdPlayer
é2 Projector ()

gyon ()
g 0ff ()
& tvMode ()
2 toString ()

SOFTWARE DESIGN LABORATORY

Sequence Diagram for Watch movie:

| watchmovie
% user:User Il :HomeTheaterFacade = Projector = :DvdPlayer

1: watchMovie
1.1:on

1.1.1: tvMode

1.2.1: play

1.3:0n

! :Amplifier

SOFTWARE DESIGN LABORATORY

Communication Diagram for Watch Movie:

| Watchmovie

user:User

1: watchMavie

:HomeTheaterFacade

1.1.1: tyMode

1.1 on
1.2.1: play
1.2:0n

1.31on

‘Projector :DvdPlayer [Amplifier

SOFTWARE DESIGN LABORATORY

Sequence diagram for Shutdown home Theater System:

[Ishutdown Home Theater

S user:User

! :HomeTheaterFacade

1: endMovie

1.1: stop

! :DvdPlayer

= ‘Projector

1.3: off

1.4: off

= Amplifier

SOFTWARE DESIGN LABORATORY

Communication diagram for Shutdown home Theater System:

I/|Shutdown Home Theater

user:User

1: endMovie

‘HomeTheaterFacade

1.4: off
1.3: off
1.2} off
1.1: stop
:Amplifier ‘Projector :DvdPlayer

SOFTWARE DESIGN LABORATORY

Java Code :

Amplifier.java:

public class Amplifier

{
String description;
DvdPlayer dvd;
public Amplifier(String description)
{

¥
public void on()

{

this.description = description;

System.out.printin(description + " on™);

¥
public void off()
{

}
public String toString()
{

}

System.out.printin(description + " off");

return description;

}

DvdPlayer.java

public class DvdPlayer
{
String description;
Amplifier amplifier;
String movie;
public DvdPlayer(String description, Amplifier amplifier)

¢ this.description = description;
this.amplifier = amplifier;

éublic void on()

¢ System.out.printin(description + " on™);

%ublic void off()

i System.out.printin(description + " off");

SOFTWARE DESIGN LABORATORY

}

public void play(String movie)

¢ this.movie = movie;

System.out.printin(description + " playing \'"*" + movie + "\'"");
%ublic void stop()
¢ System.out.printIn(description + " stopped \"" + movie + "\"");
%ublic String toString()
; return description;

Projector.java:

public class Projector

{

String description;
DvdPlayer dvdPlayer;
public Projector(String description, DvdPlayer dvdPlayer)
{
this.description = description;
this.dvdPlayer = dvdPlayer;

}
public void on()
{
System.out.printin(description + " on");
¥
public void off()
{

System.out.printin(description + " off");

¥
public void tvMode()
{

}
public String toString()

{

return description;

}

System.out.printin(description + " in tv mode (4x3 aspect ratio)");

SOFTWARE DESIGN LABORATORY

HomeTheaterFacade.java

public class HomeTheaterFacade

{
Amplifier amp;
DvdPlayer dvd;
Projector projector;
public HomeTheaterFacade(Amplifier amp, DvdPlayer dvd, Projector projector)
{
this.amp = amp;
this.dvd = dvd,;
this.projector = projector;
¥
public void watchMovie(String movie)
{
System.out.printin("Get ready to watch a movie...");
projector.on();
amp.on();
dvd.on();
dvd.play(movie);
¥
public void endMovie()
{
System.out.printin(Shutting movie theater down...");
projector.off();
amp.off();
dvd.stop();
dvd.off();
¥
}

HomeTheaterTestDrive.java:

public class HomeTheaterTestDrive

{

public static void main(String[] args)

{
Amplifier amp = new Amplifier("Top-O-Line Amplifier");
DvdPlayer dvd = new DvdPlayer("Top-O-Line DVD Player", amp);
Projector projector = new Projector("Top-O-Line Projector”, dvd);
HomeTheaterFacade homeTheater = new HomeTheaterFacade(amp, dvd, projector);
homeTheater.watchMovie(""Write your own movie name !!");
homeTheater.endMovie();

SOFTWARE DESIGN LABORATORY

Get ready to watch a movie...

Top-O-Line Projector on

Top-O-Line Amplifier on

Top-O-Line DVD Player on

Top-O-Line DVD Player playing "Write your own movie name !!"
Shutting movie theater down...

Top-O-Line Projector off

Top-O-Line Amplifier off

Top-O-Line DVD Player stopped "Write your own movie name !!"
Top-O-Line DVD Player off

SOFTWARE DESIGN LABORATORY

4. Polymorphism Design Pattern

Problem:
How handle alternatives based on type? How to create pluggable software components?

Solution:
When related alternatives or behaviors vary by type (class), assign responsibility for the behavior using
polymorphic operations to the types for which the behavior varies.

Structure:
_ «interface»
2] TheInterface
| Implementer1 | Implementer2

| Implementer...n

Participants:

Thelnterface:
This interface will provide the behavior which varies according to the class type. All classes
implementing this interface will write the method accordingly.

Implementer:
The classes will implement the operations from the interface as per the polymorphic nature.

Example:
We have to develop an application which will draw different shapes. The user will use this application to

draw shapes like Circle, Rectangle, triangle. At a later stage we can have some more shapes be added to
the application.

SOFTWARE DESIGN LABORATORY

Usecase diagram:

draw circle

draw Triangle

Actorl

drawRectangle

Pattern Instance:

zPattern Instances=
< Polymorphism

FPaolymorphizm
Thelnterface [1.7%] : I‘:ﬁl?:;Shape
Implementer [*] : | #:Circle Triangle Recatngle DrawShape

SOFTWARE DESIGN LABORATORY

Class diagram:

| DrawShape
g2, main ()
*®
- shape

0.1 winterfaces

= Shape

g draw ()

E circle | Triangle

| Rectangle

SOFTWARE DESIGN LABORATORY

Sequence diagram:

= rectangle:Rectangle

 circle:Circle

] Interactionl
-] drawShape:DrawShape =] shape:Shape I triangle: Triangle
1: draw
10 draw
[trianle]
[rectangle]
10 draw

[circle] 1: draw

SOFTWARE DESIGN LABORATORY

Communication Diagram:

E | Interactionl
dravwshape:Drawshape

1 draw

shape:shape

i =10
s draw
sdraw
rectangle: Rectangle circle: Circle triangle: Triangle

SOFTWARE DESIGN LABORATORY

Java Code:
Shape.java:
public interface Shape

public void draw();

}

Circle.java:

public class Circle implements Shape

{
public void draw()
{
System.out.printin("This is a Circle");
¥
}

Rectangle.java:

public class Rectangle implements Shape

{
public void draw()
{
System.out.printin("This is a Rectangle");
¥
}

Triangle.java:

public class Triangle implements Shape

{
public void draw()
{
System.out.printIn("This is a Triangle™);
b
¥

SOFTWARE DESIGN LABORATORY

DrawShape.java:
import java.util.Scanner;
public class DrawShape

{

private static Shape shape;

public static void main(String a[])

{

System.out.printin("Please enter options Draw 1.Circle 2.Rectangle 3.Triangle™);
Scanner sin=new Scanner(System.in);
int opt;
opt=sin.nextint();
switch(opt)

{
case 1.
shape=new Circle();
break;
case 2:
shape=new Rectangle();
break;
case 3:
shape=new Triangle();
break;
default:
System.out.printin(*Invalid option ");
System.exit(0);
}
shape.draw();
}
}
Output:-

Please enter options Draw 1.Circle 2.Rectangle 3.Triangle
1
This is a Circle.

