
Module – 1: Application Layer

SANTOSH K C, Asst. Prof., Dept. of CSE, BIET, Davangere

SVIT
1

Module – 1

APPLICATION LAYER

1.1 Principles of Network Applications

Network application development is writing programs that run on different end systems and

communicate with each other over the network.

For example, in the Web application there are two distinct programs that communicate with each

other: the browser program running in the user’s host and the Web server program running in the

Web server host.

1.1.1 Network Application Architectures.

There are two different network application architecture, they are

1) Client Server Architecture

2) P2P Architecture

Client Server Architecture:

 In client-server architecture, there is an always-on host, called the server, which provides

services when it receives requests from many other hosts, called clients.

Example: In Web application Web server services requests from browsers running on client

hosts. When a Web server receives a request for an object from a client host, it responds by

sending the requested object to the client host.

 In client-server architecture, clients do not directly communicate with each other.

 The server has a fixed, well-known address, called an IP address. Because the server has a

fixed, well-known address, and because the server is always on, a client can always contact

the server by sending a packet to the server’s IP address.

 Some of the better-known applications with a client-server architecture include the Web,

FTP, Telnet, and e-mail.

Module – 1: Application Layer

SANTOSH K C, Asst. Prof., Dept. of CSE, BIET, Davangere

SVIT
2

Client Server Architecture

 In a client-server application, a single-server host is incapable of keeping up with all the

requests from clients. For this reason, a data center, housing a large number of hosts, is often

used to create a powerful virtual server.

 The most popular Internet services—such as search engines (e.g., Google and Bing), Internet

commerce (e.g., Amazon and e-Bay), Web-based email (e.g., Gmail and Yahoo Mail), social

networking (e.g., Facebook and Twitter)— employ one or more data centers.

Peer-to-peer (P2P) Architecture:

 In a P2P architecture, there is minimal dependence on dedicated servers in data centers.

 The application employs direct communication between pairs of intermittently connected

hosts, called peers.

 The peers are not owned by the service provider, but are instead desktops and laptops

controlled by users, with most of the peers residing in homes, universities, and offices.

 Many of today’s most popular and traffic-intensive applications are based on P2P

architectures. These applications include file sharing (e.g., BitTorrent), Internet Telephony

(e.g., Skype), and IPTV (e.g., Kankan and PPstream).

 Features:

 Self-scalability:

For example, in a P2P file-sharing application, although each peer generates workload by

requesting files, each peer also adds service capacity to the system by distributing files to

other peers.

 Cost effective:

P2P architectures are also cost effective, since they normally don’t require significant

server infrastructure and server bandwidth

Module – 1: Application Layer

SANTOSH K C, Asst. Prof., Dept. of CSE, BIET, Davangere

SVIT
3

P2P Architecture

Future P2P applications face three major challenges:

1. ISP Friendly. Most residential ISPs have been dimensioned for “asymmetrical” bandwidth

usage, that is, for much more downstream than upstream traffic. But P2P video streaming

and file distribution applications shift upstream traffic from servers to residential ISPs,

thereby putting significant stress on the ISPs. Future P2P applications need to be designed so

that they are friendly to ISPs

2. Security. Because of their highly distributed and open nature, P2P applications can be a

challenge to secure

3. Incentives. The success of future P2P applications also depends on convincing users to

volunteer bandwidth, storage, and computation resources to the applications, which is the

challenge of incentive design.

1.1.2 Processes Communicating

 A Process is a program or application under execution.

 When processes are running on the same or different end system, they can communicate with

each other with inter process communication, using rules that are governed by the end

system’s operating system.

 Processes on two different end systems communicate with each other by exchanging

messages across the computer network. A sending process creates and sends messages into

the network; a receiving process receives these messages and possibly responds by sending

messages back.

Module – 1: Application Layer

SANTOSH K C, Asst. Prof., Dept. of CSE, BIET, Davangere

SVIT
4

Client and Server Processes

 A network application consists of pairs of processes that send messages to each other over a

network.

For example, in the Web application a client browser process exchanges messages with a

Web server process.

 In the context of a communication session between a pair of processes, the process that

initiates the communication is labeled as the client. The process that waits to be contacted to

begin the session is the server.

The Interface between the Process and the Computer Network

 A process sends messages into, and receives messages from, the network through a software

interface called a socket.

 It is also referred to as the Application Programming Interface (API) between the application

and the network, since the socket is the programming interface with which network

applications are built.

 The application at the sending side pushes messages through the socket. At the other side of

the socket, the transport-layer protocol has the responsibility of getting the messages to the

socket of the receiving process.

Application processes, sockets, and underlying transport protocol

Module – 1: Application Layer

SANTOSH K C, Asst. Prof., Dept. of CSE, BIET, Davangere

SVIT
5

Addressing Processes

 For a process running on one host to send packets to a process running on another host, the

receiving process needs to have an address.

 To identify the receiving process, two pieces of information need to be specified:

(1) The address of the host

(2) An identifier that specifies the receiving process in the destination host.

 In the Internet, the host is identified by its IP address.

 In addition to knowing the address of the host to which a message is destined, the sending

process must also identify the receiving process running in the host. A destination port

number serves this purpose. Popular applications have been assigned specific port numbers.

For example, a Web server is identified by port number 80. A mail server process (using the

SMTP protocol) is identified by port number 25.

1.1.3 Transport Services Available to Applications

1) Reliable Data Transfer

 Packets can get lost within a computer network. For example, a packet can overflow a buffer

in a router, or can be discarded by a host or router after having some of its bits corrupted.

 For many applications—such as electronic mail, file transfer, remote host access, Web

document transfers, and financial applications—data loss can have devastating consequences.

 Thus, to support these applications, something has to be done to guarantee that the data sent

by one end of the application is delivered correctly and completely to the other end of the

application.

 If a protocol provides such a guaranteed data delivery service, it is said to provide reliable

data transfer. One important service that a transport-layer protocol can potentially provide to

an application is process-to-process reliable data transfer.

 When a transport protocol provides this service, the sending process can just pass its data into

the socket and know with complete confidence that the data will arrive without errors at the

receiving process.

 When a transport-layer protocol doesn’t provide reliable data transfer, some of the data sent

by the sending process may never arrive at the receiving process. This may be acceptable for

Module – 1: Application Layer

SANTOSH K C, Asst. Prof., Dept. of CSE, BIET, Davangere

SVIT
6

loss-tolerant applications, most notably multimedia applications such as conversational

audio/video that can tolerate some amount of data loss.

2) Throughput

 Transport-layer protocol could provide guaranteed available throughput at some specified

rate.

 With such a service, the application could request a guaranteed throughput of r bits/sec, and

the transport protocol would then ensure that the available throughput is always at least r

bits/sec. Such a guaranteed throughput service would appeal to many applications.

For example, if an Internet telephony application encodes voice at 32 kbps, it needs to send

data into the network and have data delivered to the receiving application at this rate.

 If the transport protocol cannot provide this throughput, the application would need to encode

at a lower rate or may have to give up.

 Applications that have throughput requirements are said to be bandwidth-sensitive

applications. Many current multimedia applications are bandwidth sensitive

 Elastic applications can make use of as much, or as little, throughput as happens to be

available. Electronic mail, file transfer, and Web transfers are all elastic applications.

3) Timing

 A transport-layer protocol can also provide timing guarantees.

 Interactive real-time applications, such as Internet telephony, virtual environments,

teleconferencing, and multiplayer games require tight timing constraints on data delivery in

order to be effective.

4) Security

 Transport protocol can provide an application with one or more security services.

For example, in the sending host, a transport protocol can encrypt all data transmitted by the

sending process, and in the receiving host, the transport-layer protocol can decrypt the data

before delivering the data to the receiving process.

 A transport protocol can provide security services like confidentiality, data integrity and end-

point authentication.

Module – 1: Application Layer

SANTOSH K C, Asst. Prof., Dept. of CSE, BIET, Davangere

SVIT
7

1.1.4 Transport Services Provided by the Internet

The Internet makes two transport protocols available to applications, UDP and TCP.

Requirements of selected network applications

TCP Services

The TCP service model includes a connection-oriented service and a reliable data transfer

service.

1) Connection-oriented service:

 In TCP the client and server exchange transport layer control information with each other

before the application-level messages begin to flow.

 This handshaking procedure alerts the client and server, allowing them to prepare for an

onslaught of packets.

 After the handshaking phase, a TCP connection is said to exist between the sockets of the

two processes.

 The connection is a full-duplex connection in that the two processes can send messages to

each other over the connection at the same time.

 When the application finishes sending messages, it must tear down the connection.

2) Reliable data transfer service:

 The communicating processes can rely on TCP to deliver all data sent without error and in

the proper order.

Module – 1: Application Layer

SANTOSH K C, Asst. Prof., Dept. of CSE, BIET, Davangere

SVIT
8

 When one side of the application passes a stream of bytes into a socket, it can count on TCP

to deliver the same stream of bytes to the receiving socket, with no missing or duplicate

bytes.

TCP also includes a congestion-control mechanism.

UDP Services

 UDP is connectionless, so there is no handshaking before the two processes start to

communicate.

 UDP provides an unreliable data transfer service—that is, when a process sends a message

into a UDP socket, UDP provides no guarantee that the message will ever reach the receiving

process.

 UDP does not include a congestion-control mechanism, so the sending side of UDP can

pump data into the layer below (the network layer) at any rate it pleases.

Popular Internet applications, their application-layer protocols, and their underlying transport

protocols

1.1.5 Application-Layer Protocols

An application-layer protocol defines:

 The types of messages exchanged, for example, request messages and response messages

 The syntax of the various message types, such as the fields in the message and how the fields

are delineated

Module – 1: Application Layer

SANTOSH K C, Asst. Prof., Dept. of CSE, BIET, Davangere

SVIT
9

 The semantics of the fields, that is, the meaning of the information in the fields

 Rules for determining when and how a process sends messages and responds to messages.

1.2 The Web and HTTP

1.2.1 Overview of HTTP

 The Hyper Text Transfer Protocol (HTTP), the Web’s application-layer protocol, is at the

heart of the Web.

 HTTP is implemented in two programs: a client program and a server program. The client

program and server program, executing on different end systems, talk to each other by

exchanging HTTP messages. HTTP defines the structure of these messages and how the

client and server exchange the messages.

 A Web page consists of objects. An object is simply a file like HTML file, a JPEG image, a

Java applet, or a video clip—that is addressable by a single URL.

 Most Web pages consist of a base HTML file and several referenced objects. For example, if

a Web page contains HTML text and five JPEG images, then the Web page has six objects:

the base HTML file plus the five images.

 The base HTML file references the other objects in the page with the objects’ URLs. Each

URL has two components: the hostname of the server that houses the object and the object’s

path name.

For example, the URL http://www.saividya.ac.in/home/picture.gif has www.saividya.ac.in

for a hostname and /home/picture.gif for a path name.

 HTTP defines how Web clients request Web pages from Web servers and how servers

transfer Web pages to clients.

 When a user requests a Web page (for example, clicks on a hyperlink), the browser sends

HTTP request messages for the objects in the page to the server. The server receives the

requests and responds with HTTP response messages that contain the objects.

 HTTP uses TCP as its underlying transport protocol. The HTTP client first initiates a TCP

connection with the server. Once the connection is established, the browser and the server

processes access TCP through their socket interfaces.

http://www.saividya.ac.in/home/picture.gif
http://www.saividya.ac.in/

Module – 1: Application Layer

SANTOSH K C, Asst. Prof., Dept. of CSE, BIET, Davangere

SVIT
10

 It is important to note that the server sends requested files to clients without storing any state

information about the client. If a particular client asks for the same object twice in a period of

a few seconds, the server does not respond by saying that it just served the object to the

client; instead, the server resends the object, as it has completely forgotten what it did earlier.

Because an HTTP server maintains no information about the clients, HTTP is said to be a

stateless protocol.

1.2.2 Non-Persistent and Persistent Connections

If Separate TCP connection is used for each request and response, then the connection is said to

be non persistent. If same TCP connection is used for series of related request and response, then

the connection is said to be persistent.

HTTP with Non-Persistent Connections

Let’s suppose the page consists of a base HTML file and 10 JPEG images, and that all 11 of

these objects reside on the same server.

Further suppose the URL for the base HTML file is

http://www.someSchool.edu/someDepartment/home.index

Here is what happens:

1. The HTTP client process initiates a TCP connection to the server www.someSchool.edu on

port number 80, which is the default port number for HTTP. Associated with the TCP

connection, there will be a socket at the client and a socket at the server.

http://www.someschool.edu/someDepartment/home.index
http://www.someschool.edu/someDepartment/home.index
http://www.someschool.edu/

Module – 1: Application Layer

SANTOSH K C, Asst. Prof., Dept. of CSE, BIET, Davangere

SVIT
11

2. The HTTP client sends an HTTP request message to the server via its socket. The request

message includes the path name /someDepartment/home.index.

3. The HTTP server process receives the request message via its socket, retrieves the object

/someDepartment/home.index from its storage (RAM or disk), encapsulates the object in an

HTTP response message, and sends the response message to the client via its socket.

4. The HTTP server process tells TCP to close the TCP connection.

5. The HTTP client receives the response message. The TCP connection terminates. The

message indicates that the encapsulated object is an HTML file. The client extracts the file

from the response message, examines the HTML file, and finds references to the 10 JPEG

objects.

6. The first four steps are then repeated for each of the referenced JPEG objects.

 Round-trip time (RTT) is the time it takes for a small packet to travel from client to server

and then back to the client.

 The RTT includes packet-propagation delays, packet queuing delays in intermediate routers

and switches, and packet-processing delays.

 When a user clicks on a hyperlink, the browser initiate a TCP connection between the

browser and the Web server; this involves a “three-way handshake”—the client sends a small

TCP segment to the server, the server acknowledges and responds with a small TCP segment,

and, finally, the client acknowledges back to the server.

Module – 1: Application Layer

SANTOSH K C, Asst. Prof., Dept. of CSE, BIET, Davangere

SVIT
12

 The first two parts of the three way handshake take one RTT.

 After completing the first two parts of the handshake, the client sends the HTTP request

message combined with the third part of the three-way handshake (the acknowledgment) into

the TCP connection.

 Once the request message arrives at the server, the server sends the HTML file into the TCP

connection. This HTTP request/response eats up another RTT. Thus, roughly, the total

response time is two RTTs plus the transmission time at the server of the HTML file.

HTTP with Persistent Connections

Non-persistent connections have some shortcomings.

1. A brand-new connection must be established and maintained for each requested object. For

each of these connections, TCP buffers must be allocated and TCP variables must be kept in

both the client and server. This can place a significant burden on the Web server, which may

be serving requests from hundreds of different clients simultaneously.

2. Each object suffers a delivery delay of two RTTs— one RTT to establish the TCP connection

and one RTT to request and receive an object.

With persistent connections, the server leaves the TCP connection open after sending a response.

Subsequent requests and responses between the same client and server can be sent over the same

connection. In particular, an entire Web page can be sent over a single persistent TCP

connection. Moreover, multiple Web pages residing on the same server can be sent from the

server to the same client over a single persistent TCP connection.

1.2.3 HTTP Message Format

HTTP Request Message:

Module – 1: Application Layer

SANTOSH K C, Asst. Prof., Dept. of CSE, BIET, Davangere

SVIT
13

Where sp – space, cr – carriage return and lf – line feed.

Method:

There are five HTTP methods:

 GET: The GET method is used when the browser requests an object, with the requested

object identified in the URL field.

 POST: With a POST message, the user is still requesting a Web page from the server,

but the specific contents of the Web page depend on what the user entered into the form

fields. If the value of the method field is POST, then the entity body contains what the

user entered into the form fields.

 PUT: The PUT method is also used by applications that need to upload objects to Web

servers.

 HEAD: Used to retrieve header information. It is used for debugging purpose.

 DELETE: The DELETE method allows a user, or an application, to delete an object on a

Web server.

URL: Specifies URL of the requested object

Version: This field represents HTTP version, usually HTTP/1.1

Header line:

Ex:

Host: www.someschool.edu

Connection: close

User-agent: Mozilla/5.0

Accept-language: fr

The header line Host:www.someschool.edu specifies the host on which the object resides.

By including the Connection:close header line, the browser is telling the server that it doesn’t

want to bother with persistent connections; it wants the server to close the connection after

sending the requested object.

The User-agent: header line specifies the user agent, that is, the browser type that is making the

request to the server. Here the user agent is Mozilla/5.0, a Firefox browser.

http://www.someschool.edu/
http://www.someschool.edu/

Module – 1: Application Layer

SANTOSH K C, Asst. Prof., Dept. of CSE, BIET, Davangere

SVIT
14

HTTP/1.1 200 OK

Connection: close

Date: Tue, 09 Aug 2011 15:44:04 GMT

Server: Apache/2.2.3 (CentOS)

Last-Modified: Tue, 09 Aug 2011 15:11:03 GMT

Content-Length: 6821

Content-Type: text/html

(data data data data data ...)

The Accept-language: header indicates that the user prefers to receive a French version of the

object, if such an object exists on the server; otherwise, the server should send its default version.

HTTP Response Message

Ex:

The status line has three fields: the protocol version field, a status code, and a corresponding

status message.

Version is HTTP/1.1

The status code and associated phrase indicate the result of the request. Some common status

codes and associated phrases include:

• 200 OK: Request succeeded and the information is returned in the response.

Module – 1: Application Layer

SANTOSH K C, Asst. Prof., Dept. of CSE, BIET, Davangere

SVIT
15

• 301 Moved Permanently: Requested object has been permanently moved; the new URL is

specified in Location: header of the response message. The client software will automatically

retrieve the new URL.

• 400 Bad Request: This is a generic error code indicating that the request could not be

understood by the server.

• 404 Not Found: The requested document does not exist on this server.

• 505 HTTP Version Not Supported: The requested HTTP protocol version is not supported by

the server.

Header fields:

 The server uses the Connection: close header line to tell the client that it is going to close

the TCP connection after sending the message.

 The Date: header line indicates the time and date when the HTTP response was created

and sent by the server.

 The Server: header line indicates that the message was generated by an Apache Web

server; it is analogous to the User-agent: header line in the HTTP request message.

 The Last-Modified: header line indicates the time and date when the object was created

or last modified.

 The Content-Length: header line indicates the number of bytes in the object being sent.

 The Content-Type: header line indicates that the object in the entity body is HTML text.

1.2.4 User-Server Interaction: Cookies

It is often desirable for a Web site to identify users, either because the server wishes to restrict

user access or because it wants to serve content as a function of the user identity. For these

purposes, HTTP uses cookies.

Cookie technology has four components:

(1) A cookie header line in the HTTP response message;

(2) A cookie header line in the HTTP request message;

(3) A cookie file kept on the user’s end system and managed by the user’s browser;

(4) A back-end database at the Web site.

Ex:

Module – 1: Application Layer

SANTOSH K C, Asst. Prof., Dept. of CSE, BIET, Davangere

SVIT
16

Suppose a user, who always accesses the Web using Internet Explorer from her home PC,

contacts Amazon.com for the first time. Let us suppose that in the past he has already visited the

eBay site. When the request comes into the Amazon Web server, the server creates a unique

identification number and creates an entry in its back-end database that is indexed by the

identification number. The Amazon Web server then responds to Susan’s browser, including in

the HTTP response a Set-cookie: header, which contains the identification number.

For example, the header line might be:

Set-cookie: 1678

When users browser receives the HTTP response message, it sees the Set-cookie: header. The

browser then appends a line to the special cookie file that it manages. This line includes the

hostname of the server and the identification number in the Set-cookie: header.

As user continues to browse the Amazon site, each time he requests a Web page, his browser

consults his cookie file, extracts his identification number for this site, and puts a cookie header

line that includes the identification number in the HTTP request. Specifically, each of his HTTP

requests to the Amazon server includes the header line:

Cookie: 1678

Module – 1: Application Layer

SANTOSH K C, Asst. Prof., Dept. of CSE, BIET, Davangere

SVIT
17

1.2.5 Web Caching

 A Web cache—also called a proxy server—is a network entity that satisfies HTTP requests

on the behalf of an origin Web server.

 The Web cache has its own disk storage and keeps copies of recently requested objects in this

storage.

 A user’s browser can be configured so that all of the user’s HTTP requests are first directed

to the Web cache.

Ex: Suppose a browser is requesting the object http://www.someschool.edu/campus.gif. Here

is what happens:

1. The browser establishes a TCP connection to the Web cache and sends an HTTP request

for the object to the Web cache.

2. The Web cache checks to see if it has a copy of the object stored locally. If it does, the

Web cache returns the object within an HTTP response message to the client browser.

3. If the Web cache does not have the object, the Web cache opens a TCP connection to the

origin server, that is, to www.someschool.edu. The Web cache then sends an HTTP

request for the object into the cache-to-server TCP connection.

4. After receiving this request, the origin server sends the object within an HTTP response

to the Web cache.

5. When the Web cache receives the object, it stores a copy in its local storage and sends a

copy, within an HTTP response message, to the client browser (over the existing TCP

connection between the client browser and the Web cache).

http://www.someschool.edu/campus.gif
http://www.someschool.edu/

Module – 1: Application Layer

SANTOSH K C, Asst. Prof., Dept. of CSE, BIET, Davangere

SVIT
18

HTTP/1.1 200 OK

Date: Sat, 8 Oct 2011 15:39:29

Server: Apache/1.3.0 (Unix)

Last-Modified: Wed, 7 Sep 2011 09:23:24

Content-Type: image/gif

(data data data data data ...)

 When web cache receives requests from and sends responses to a browser, it is a server.

When it sends requests to and receives responses from an origin server, it is a client.

 Typically a Web cache is purchased and installed by an ISP. For example, a university might

install a cache on its campus network and configure all of the campus browsers to point to

the cache. Or a major residential ISP (such as AOL) might install one or more caches in its

network and pre configure its shipped browsers to point to the installed caches.

 Web caching has seen deployment in the Internet for two reasons. First, a Web cache can

substantially reduce the response time for a client request. Second, Web caches can

substantially reduce traffic on an institution’s access link to the Internet.

1.2.6 The Conditional GET

 Although caching can reduce user-perceived response times, it introduces a new problem—

the copy of an object residing in the cache may be stale. In other words, the object housed in

the Web server may have been modified since the copy was cached at the client.

 HTTP has a mechanism that allows a cache to verify that its objects are up to date. This

mechanism is called the conditional GET.

 An HTTP request message is a so-called conditional GET message if (1) the request message

uses the GET method and (2) the request message includes an If-Modified- Since: header

line.

Ex:

First, on the behalf of a requesting browser, a proxy cache sends a request message to a Web

server:

Second, the Web server sends a response message with the requested object to the cache:

GET /fruit/kiwi.gif HTTP/1.1

Host: www.exotiquecuisine.com

http://www.exotiquecuisine.com/

Module – 1: Application Layer

SANTOSH K C, Asst. Prof., Dept. of CSE, BIET, Davangere

SVIT
19

The cache forwards the object to the requesting browser but also caches the object locally.

Importantly, the cache also stores the last-modified date along with the object.

Third, one week later, another browser requests the same object via the cache, and the object is

still in the cache. Since this object may have been modified at the Web server in the past week,

the cache performs an up-to-date check by issuing a conditional GET. Specifically, the cache

sends:

This conditional GET is telling the server to send the object only if the object has been modified

since the specified date.

Suppose the object has not been modified since 7 Sep 2011 09:23:24. Then, fourth, the Web

server sends a response message to the cache:

We see that in response to the conditional GET, the Web server still sends a response message

but does not include the requested object in the response message.

1.3 File Transfer: FTP

 FTP is used for transferring file from one host to another host.

 In order for the user to access the remote account, the user must provide user identification

and a password. After providing this authorization information, the user can transfer files

from the local file system to the remote file system and vice versa.

 The user first provides the hostname of the remote host, causing the FTP client process in the

local host to establish a TCP connection with the FTP server process in the remote host.

 The user then provides the user identification and password, which are sent over the TCP

connection as part of FTP commands.

HTTP/1.1 304 Not Modified

Date: Sat, 15 Oct 2011 15:39:29

Server: Apache/1.3.0 (Unix)

(empty entity body)

GET /fruit/kiwi.gif HTTP/1.1

Host: www.exotiquecuisine.com

If-modified-since: Wed, 7 Sep 2011 09:23:24

http://www.exotiquecuisine.com/

Module – 1: Application Layer

SANTOSH K C, Asst. Prof., Dept. of CSE, BIET, Davangere

SVIT
20

 Once the server has authorized the user, the user copies one or more files stored in the local

file system into the remote file system (or vice versa).

 FTP uses two parallel TCP connections to transfer a file, a control connection and a data

connection.

 The control connection is used for sending control information between the two hosts—

information such as user identification, password, commands to change remote directory, and

commands to “put” and “get” files.

 The data connection is used to actually send a file.

 When a user starts an FTP session with a remote host, the client side of FTP (user) first

initiates a control TCP connection with the server side (remote host) on server port number

21.

 The client side of FTP sends the user identification and password over this control

connection. The client side of FTP also sends, over the control connection, commands to

change the remote directory.

 When the server side receives a command for a file transfer over the control connection

(either to, or from, the remote host), the server side initiates a TCP data connection to the

client side.

Module – 1: Application Layer

SANTOSH K C, Asst. Prof., Dept. of CSE, BIET, Davangere

SVIT
21

 FTP sends exactly one file over the data connection and then closes the data connection. If,

during the same session, the user wants to transfer another file, FTP opens another data

connection.

 Thus, with FTP, the control connection remains open throughout the duration of the user

session, but a new data connection is created for each file transferred within a session (that is,

the data connections are non-persistent).

 Throughout a session, the FTP server must maintain state about the user. In particular, the

server must associate the control connection with a specific user account, and the server must

keep track of the user’s current directory as the user wanders about the remote directory tree.

1.3.1 FTP Commands and Replies

Some of the more common commands are given below:

• USER username: Used to send the user identification to the server.

• PASS password: Used to send the user password to the server.

• LIST: Used to ask the server to send back a list of all the files in the current remote directory.

The list of files is sent over a (new and non-persistent) data connection rather than the control

TCP connection.

• RETR filename: Used to retrieve (that is, get) a file from the current directory of the remote

host. This command causes the remote host to initiate a data connection and to send the

requested file over the data connection.

• STOR filename: Used to store (that is, put) a file into the current directory of the remote host.

Each command is followed by a reply, sent from server to client. The replies are three-digit

numbers, with an optional message following the number.

• 331 Username OK, password required

• 125 Data connection already open; transfer starting

• 425 Can’t open data connection

• 452 Error writing file

1.4 Electronic Mail in the Internet

E-mail has three major components: user agents, mail servers, and the Simple Mail Transfer

Protocol (SMTP).

Module – 1: Application Layer

SANTOSH K C, Asst. Prof., Dept. of CSE, BIET, Davangere

SVIT
22

 User agents allow users to read, reply to, forward, save, and compose messages.

 Mail servers form the core of the e-mail infrastructure. Each recipient has a mailbox located

in one of the mail servers. A typical message starts its journey in the sender’s user agent,

travels to the sender’s mail server, and travels to the recipient’s mail server, where it is

deposited in the recipient’s mailbox.

 SMTP is the principal application-layer protocol for Internet electronic mail. It uses the

reliable data transfer service of TCP to transfer mail from the sender’s mail server to the

recipient’s mail server. As with most application-layer protocols, SMTP has two sides: a

client side, which executes on the sender’s mail server, and a server side, which executes on

the recipient’s mail server.

1.4.1 SMTP

SMTP transfers messages from senders’ mail servers to the recipients’ mail servers. It restricts

the body (not just the headers) of all mail messages to simple 7-bit ASCII.

Suppose Alice wants to send Bob a simple ASCII message.

1. Alice invokes her user agent for e-mail, provides Bob’s e-mail address (for example,

bob@someschool.edu), composes a message, and instructs the user agent to send the message.

Module – 1: Application Layer

SANTOSH K C, Asst. Prof., Dept. of CSE, BIET, Davangere

SVIT
23

2. Alice’s user agent sends the message to her mail server, where it is placed in a message queue.

3. The client side of SMTP, running on Alice’s mail server, sees the message in the message

queue. It opens a TCP connection to an SMTP server, running on Bob’s mail server.

4. After some initial SMTP handshaking, the SMTP client sends Alice’s message into the TCP

connection.

5. At Bob’s mail server, the server side of SMTP receives the message. Bob’s mail server then

places the message in Bob’s mailbox.

6. Bob invokes his user agent to read the message at his convenience.

An example transcript of messages exchanged between an SMTP client (C) and an SMTP server

(S).

S: 220 hamburger.edu

C: HELO crepes.fr

S: 250 Hello crepes.fr, pleased to meet you

C: MAIL FROM: <alice@crepes.fr>

S: 250 alice@crepes.fr ... Sender ok

C: RCPT TO: <bob@hamburger.edu>

S: 250 bob@hamburger.edu ... Recipient ok

C: DATA

S: 354 Enter mail, end with “.” on a line by itself

C: Do you like ketchup?

C: How about pickles?

C: .

S: 250 Message accepted for delivery

C: QUIT

S: 221 hamburger.edu closing connection

mailto:alice@crepes.fr
mailto:alice@crepes.fr
mailto:bob@hamburger.edu
mailto:bob@hamburger.edu

Module – 1: Application Layer

SANTOSH K C, Asst. Prof., Dept. of CSE, BIET, Davangere

SVIT
24

From: alice@crepes.fr

To: bob@hamburger.edu

Subject: Searching for the meaning of life.

1.4.2 Comparison with HTTP

HTTP SMTP

Pull Protocol- someone loads information on a

Web server and users use HTTP to pull the

information from the server at their

convenience.

Push Protocol- the sending mail server pushes

the file to the receiving mail server.

HTTP does not mandates data to be in 7-bit

ASCII format.

SMTP requires each message, including the

body of each message, to be in 7-bit ASCII

format.

HTTP encapsulates each object in its own

HTTP response message.

Internet mail places all of the message’s

objects into one message.

1.4.3 Mail Message Formats

When an e-mail message is sent from one person to another, a header containing peripheral

information precedes the body of the message.

The header lines and the body of the message are separated by a blank line.

Every header must have a From: header line and a To: header line; a header may include a

Subject: header line as well as other optional header lines.

A typical message header looks like this:

1.4.4 Mail Access Protocols

SMTP protocol delivers the mail to the mail server. To fetch the mail from mail server receiver

used mail access protocols.

There are currently a number of popular mail access protocols, including Post Office Protocol—

Version 3 (POP3), Internet Mail Access Protocol (IMAP), and HTTP.

mailto:alice@crepes.fr
mailto:bob@hamburger.edu

Module – 1: Application Layer

SANTOSH K C, Asst. Prof., Dept. of CSE, BIET, Davangere

SVIT
25

user bob

+OK

pass hungry

+OK user successfully logged on

POP3

 POP3 is an extremely simple mail access protocol.

 POP3 begins when the user agent (the client) opens a TCP connection to the mail server (the

server) on port 110.

 With the TCP connection established, POP3 progresses through three phases: authorization,

transaction, and update.

 During the authorization phase, the user agent sends a username and a password to

authenticate the user.

 During the transaction phase, the user agent retrieves messages; also during this phase, the

user agent can mark messages for deletion, remove deletion marks, and obtain mail statistics.

 The update phase occurs after the client has issued the quit command, ending the POP3

session; at this time, the mail server deletes the messages that were marked for deletion.

 In a POP3 transaction, the user agent issues commands, and the server responds to each

command with a reply. There are two possible responses: +OK used by the server to indicate

that the previous command was fine; and -ERR, used by the server to indicate that something

was wrong with the previous command.

 The authorization phase has two principal commands: user <username> and pass

<password>.

 A user agent using POP3 can often be configured (by the user) to “download and delete” or

to “download and keep.”

 In the download-and-delete mode, the user agent will issue the list, retr, and dele commands.

Ex:

C: list

S: 1 498

S: 2 912

S: .

Module – 1: Application Layer

SANTOSH K C, Asst. Prof., Dept. of CSE, BIET, Davangere

SVIT
26

 A problem with this download-and-delete mode is that the recipient cannot access mail

messages from multiple machines.

 In the download-and keep mode, the user agent leaves the messages on the mail server after

downloading them. In this case, user can reread messages from different machines.

IMAP

 With POP3 access, once user has downloaded his messages to the local machine, he can

create mail folders and move the downloaded messages into the folders. User can then delete

messages, move messages across folders, and search for messages (by sender name or

subject).

 But this paradigm—namely, folders and messages in the local machine—poses a problem for

the nomadic user, who would prefer to maintain a folder hierarchy on a remote server that

can be accessed from any computer. This is not possible with POP3—the POP3 protocol

does not provide any means for a user to create remote folders and assign messages to

folders.

 To solve this and other problems, the IMAP protocol was invented. Like POP3, IMAP is a

mail access protocol. It has many more features than POP3, but it is also significantly more

complex.

C: retr 1

S: (blah blah ...

S:

S blah)

S: .

C: dele 1

C: retr 2

S: (blah blah ...

S:

S blah)

S: .

C: dele 2

C: quit

S: +OK POP3 server signing off

Module – 1: Application Layer

SANTOSH K C, Asst. Prof., Dept. of CSE, BIET, Davangere

SVIT
27

 An IMAP server will associate each message with a folder; when a message first arrives at

the server, it is associated with the recipient’s INBOX folder.

 The recipient can then move the message into a new, user-created folder, read the message,

delete the message, and so on.

 The IMAP protocol provides commands to allow users to create folders and move messages

from one folder to another.

 IMAP also provides commands that allow users to search remote folders for messages

matching specific criteria.

 Another important feature of IMAP is that it has commands that permit a user agent to obtain

components of messages. For example, a user agent can obtain just the message header of a

message or just one part of a multipart MIME message. This feature is useful when there is a

low-bandwidth connection (for example, a slow-speed modem link) between the user agent

and its mail server. With a low bandwidth connection, the user may not want to download all

of the messages in its mailbox, particularly avoiding long messages that might contain, for

example, an audio or video clip.

Web-Based E-Mail

More and more users today are sending and accessing their e-mail through their Web browsers.

In this case user communicates with its remote mailbox via HTTP.

1.5 DNS—The Internet’s Directory Service

 All the hosts connected to network is identified by IP address. But it is difficult for human

beings to remember these IP address to access a particular host. Hence hosts are identified by

hostnames. Ex: google.com

 But the routers require IP address to forward the packet.

 In order to map hostname with the IP address DNS is used.

1.5.1 Services Provided by DNS

 The DNS is (1) a distributed database implemented in a hierarchy of DNS servers, and (2) an

application-layer protocol that allows hosts to query the distributed database.

Module – 1: Application Layer

SANTOSH K C, Asst. Prof., Dept. of CSE, BIET, Davangere

SVIT
28

Example:

Consider what happens when a browser running on some user’s host, requests the URL

www.someschool.edu/index.html.

In order for the user’s host to be able to send an HTTP request message to the Web server

www.someschool.edu, the user’s host must first obtain the IP address of www.someschool.edu.

This is done as follows.

1. The same user machine runs the client side of the DNS application.

2. The browser extracts the hostname, www.someschool.edu, from the URL and passes the

hostname to the client side of the DNS application.

3. The DNS client sends a query containing the hostname to a DNS server.

4. The DNS client eventually receives a reply, which includes the IP address for the hostname.

5. Once the browser receives the IP address from DNS, it can initiate a TCP connection to the

HTTP server process located at port 80 at that IP address.

 DNS is commonly employed by other application-layer protocols—including HTTP, SMTP,

and FTP—to translate user-supplied hostnames to IP addresses.

DNS provides a few other important services in addition to translating hostnames to IP

addresses:

 Host aliasing: A host with a complicated hostname can have one or more alias names. For

example, a hostname such as relay1.west-coast.enterprise.com could have, say, two aliases

such as enterprise.com and www.enterprise.com. In this case, the hostname relay1.westcoast.

enterprise.com is said to be a canonical hostname. Alias hostnames, when present, are

typically more mnemonic than canonical hostnames. DNS can be invoked by an application

to obtain the canonical hostname for a supplied alias hostname as well as the IP address of

the host.

 Mail server aliasing: For obvious reasons, it is highly desirable that e-mail addresses be

mnemonic. For example, if Bob has an account with Hotmail, Bob’s e-mail address might be

as simple as bob@hotmail.com. However, the hostname of the Hotmail mail server is more

complicated and much less mnemonic than simply hotmail.com (for example, the canonical

http://www.someschool.edu/index.html
http://www.someschool.edu/
http://www.someschool.edu/
http://www.someschool.edu/
http://www.enterprise.com/
mailto:bob@hotmail.com

Module – 1: Application Layer

SANTOSH K C, Asst. Prof., Dept. of CSE, BIET, Davangere

SVIT
29

hostname might be something like relay1.west-coast.hotmail.com). DNS can be invoked by a

mail application to obtain the canonical hostname for a supplied alias hostname as well as the

IP address of the host.

 Load distribution: DNS is also used to perform load distribution among replicated servers,

such as replicated Web servers. Busy sites, such as cnn.com, are replicated over multiple

servers, with each server running on a different end system and each having a different IP

address. For replicated Web servers, a set of IP addresses is thus associated with one

canonical hostname. The DNS database contains this set of IP addresses. When clients make

a DNS query for a name mapped to a set of addresses, the server responds with the entire set

of IP addresses, but rotates the ordering of the addresses within each reply. Because a client

typically sends its HTTP request message to the IP address that is listed first in the set, DNS

rotation distributes the traffic among the replicated servers.

1.5.2 Overview of How DNS Works

 Suppose that some application running in a user’s host needs to translate a hostname to an IP

address. The application will invoke the client side of DNS, specifying the hostname that

needs to be translated.

 DNS in the user’s host then takes over, sending a query message into the network.

 All DNS query and reply messages are sent within UDP datagrams to port 53. After a delay,

ranging from milliseconds to seconds, DNS in the user’s host receives a DNS reply message

that provides the desired mapping. This mapping is then passed to the invoking application.

In this centralized design, clients simply direct all queries to the single DNS server, and the DNS

server responds directly to the querying clients. Although the simplicity of this design is

attractive, it is inappropriate for today’s Internet, with its vast (and growing) number of hosts.

The problems with a centralized design include:

 A single point of failure. If the DNS server crashes, so does the entire Internet!

 Traffic volume. A single DNS server would have to handle all DNS queries.

 Distant centralized database. A single DNS server cannot be “close to” all the querying

clients. If we put the single DNS server in New York City, then all queries from Australia

Module – 1: Application Layer

SANTOSH K C, Asst. Prof., Dept. of CSE, BIET, Davangere

SVIT
30

must travel to the other side of the globe, perhaps over slow and congested links. This can

lead to significant delays.

 Maintenance. The single DNS server would have to keep records for all Internet hosts. Not

only would this centralized database be huge, but it would have to be updated frequently to

account for every new host.

A Distributed, Hierarchical Database

 In order to deal with the issue of scale, the DNS uses a large number of servers, organized in

a hierarchical fashion and distributed around the world.

 There are three classes of DNS servers—root DNS servers, top-level domain (TLD) DNS

servers, and authoritative DNS servers—organized in a hierarchy.

 Root DNS servers. In the Internet there are 13 root DNS servers (labeled A through M),

most of which are located in North America.

Although we have referred to each of the 13 root DNS servers as if it were a single server,

each “server” is actually a network of replicated servers, for both security and reliability

purposes. All together, there are 247 root servers.

 Top-level domain (TLD) servers: These servers are responsible for top-level domains such

as com, org, net, edu, and gov, and all of the country top-level domains such as in,uk, fr, ca.

 Authoritative DNS servers: Every organization with publicly accessible hosts on the

Internet must provide publicly accessible DNS records that map the names of those hosts to

IP addresses. An organization’s authoritative DNS server houses these DNS records.

 There is another important type of DNS server called the local DNS server. A local DNS

server does not strictly belong to the hierarchy of servers but is nevertheless central to the

Module – 1: Application Layer

SANTOSH K C, Asst. Prof., Dept. of CSE, BIET, Davangere

SVIT
31

DNS architecture. Each ISP—such as a university, an academic department, an employee’s

company, or a residential ISP—has a local DNS server.

Two type of Interaction:

1) Recursive Queries:

Here DNS query is sent to local DNS server then to root server, then to TLD server and finally

to authoritative DNS server. DNS response arrives in the reverse order.

2) Iterative Queries:

Module – 1: Application Layer

SANTOSH K C, Asst. Prof., Dept. of CSE, BIET, Davangere

SVIT
32

Here DNS query will be sent to Local DNS server, then to root server. Root server sends the IP

address of TLD server. Now local DNS server sends query to TLD DNS server. TLD DNS

server sends the IP address of authoritative DNS server to local DNS server. Now Local DNS

server sends query to authoritative DNS server. Authoritative DNS server sends the IP address of

host to local DNS server. Local DNS server sends it to the host.

DNS Caching

In a query chain, when a DNS server receives a DNS reply it can cache the mapping in its local

memory.

If a hostname/IP address pair is cached in a DNS server and another query arrives to the

DNS server for the same hostname, the DNS server can provide the desired IP address, even if it

is not authoritative for the hostname. Because hosts and mappings between hostnames and IP

addresses are by no means permanent, DNS servers discard cached information after a period of

time (often set to two days).

1.5.3 DNS Records and Messages

The DNS servers that together implement the DNS distributed database store resource records

(RRs).

A resource record is a four-tuple that contains the following fields:

(Name, Value, Type, TTL)

TTL is the time to live of the resource record; it determines when a resource should be removed

from a cache.

The meaning of Name and Value depend on Type:

 If Type=A, then Name is a hostname and Value is the IP address for the hostname.

 If Type=NS, then Name is a domain (such as foo.com) and Value is the hostname of an

authoritative DNS server that knows how to obtain the IP addresses for hosts in the domain.

 If Type=CNAME, then Value is a canonical hostname for the alias hostname Name. This

record can provide querying hosts the canonical name for a hostname.

 If Type=MX, then Value is the canonical name of a mail server that has an alias hostname

Name.

Module – 1: Application Layer

SANTOSH K C, Asst. Prof., Dept. of CSE, BIET, Davangere

SVIT
33

DNS Messages

 The first 12 bytes is the header section, which has a number of fields.

 The first field is a 16-bit number that identifies the query. This identifier is copied into the

reply message to a query, allowing the client to match received replies with sent queries.

 There are a number of flags in the flag field.

A 1-bit query/reply flag indicates whether the message is a query (0) or a reply (1). A1-bit

authoritative flag is set in a reply message when a DNS server is an authoritative server for a

queried name.

A 1-bit recursion-desired flag is set when a client (host or DNS server) desires that the DNS

server perform recursion when it doesn’t have the record.

A 1-bit recursion available field is set in a reply if the DNS server supports recursion.

 In the header, there are also four number-of fields. These fields indicate the number of

occurrences of the four types of data sections that follow the header.

 The question section contains information about the query that is being made. This section

includes (1) a name field that contains the name that is being queried, and (2) a type field that

indicates the type of question being asked about the name

 In a reply from a DNS server, the answer section contains the resource records for the name

that was originally queried.

Module – 1: Application Layer

SANTOSH K C, Asst. Prof., Dept. of CSE, BIET, Davangere

SVIT
34

 The authority section contains records of other authoritative servers.

 The additional section contains other helpful records.

Inserting Records into the DNS Database

Suppose you have just created an exciting new startup company called Network Utopia. The first

thing you’ll surely want to do is register the domain name networkutopia.com at a registrar. A

registrar is a commercial entity that verifies the uniqueness of the domain name, enters the

domain name into the DNS database (as discussed below), and collects a small fee from you for

its services.

For the primary authoritative server for networkutopia.com, the registrar would insert the

following two resource records into the DNS system:

(networkutopia.com, dns1.networkutopia.com, NS)

(dns1.networkutopia.com, 212.212.212.1, A)

1.6 Peer-to-Peer Applications

In P2P architecture, there is minimal (or no) reliance on always-on infrastructure servers.

Instead, pairs of intermittently connected hosts, called peers, communicate directly with each

other.

1.6.1 P2P File Distribution

 In P2P file distribution, each peer can redistribute any portion of the file it has received to

any other peers, thereby assisting the server in the distribution process.

 The most popular P2P file distribution protocol is BitTorrent.

Scalability of P2P Architectures

As shown in below Figure the server and the peers are connected to the Internet with access

links. Denote the upload rate of the server’s access link by us, the upload rate of the ith peer’s

access link by ui, and the download rate of the ith peer’s access link by di. Also denote the size of

the file to be distributed (in bits) by F and the number of peers that want to obtain a copy of the

file by N.

Module – 1: Application Layer

SANTOSH K C, Asst. Prof., Dept. of CSE, BIET, Davangere

SVIT
35

The distribution time is the time it takes to get a copy of the file to all N peers.

In the client-server architecture, none of the peers aids in distributing the file. We make the

following observations:

 The server must transmit one copy of the file to each of the N peers. Thus the server must

transmit NF bits. Since the server’s upload rate is us, the time to distribute the file must be at

least NF/us.

 Let dmin denote the download rate of the peer with the lowest download rate, that is, dmin =

min{d1,dp,...,dN}. The peer with the lowest download rate cannot obtain all F bits of the file

in less than F/dmin seconds. Thus the minimum distribution time is at least F/dmin.

Putting these two observations together, we obtain

In the P2P architecture we make the following observations:

 At the beginning of the distribution, only the server has the file. To get this file into the

community of peers, the server must send each bit of the file at least once into its access link.

Thus, the minimum distribution time is at least F/us.

 As with the client-server architecture, the peer with the lowest download rate cannot obtain

all F bits of the file in less than F/dmin seconds. Thus the minimum distribution time is at

least F/dmin.

Module – 1: Application Layer

SANTOSH K C, Asst. Prof., Dept. of CSE, BIET, Davangere

SVIT
36

 Finally, observe that the total upload capacity of the system as a whole is equal to the upload

rate of the server plus the upload rates of each of the individual peers, that is, utotal = us + u1

+ … + uN. The system must deliver (upload) F bits to each of the N peers, thus delivering a

total of NF bits. This cannot be done at a rate faster than utotal. Thus, the minimum

distribution time is also at least NF/(us + u1 + … + uN).

Putting these three observations together, we obtain the minimum distribution time for P2P,

denoted by DP2P.

Below Figure compares the minimum distribution time for the client-server and P2P

architectures assuming that all peers have the same upload rate u.

BitTorrent

 In BitTorrent, the collection of all peers participating in the distribution of a particular file is

called a torrent.

 Peers in a torrent download equal-size chunks of the file from one another, with a typical

chunk size of 256 KBytes.

 When a peer first joins a torrent, it has no chunks. Over time it accumulates more and more

chunks. While it downloads chunks it also uploads chunks to other peers.

 Once a peer has acquired the entire file, it may leave the torrent, or remain in the torrent and

continue to upload chunks to other peers.

 Also, any peer may leave the torrent at any time with only a subset of chunks, and later rejoin

the torrent.

Module – 1: Application Layer

SANTOSH K C, Asst. Prof., Dept. of CSE, BIET, Davangere

SVIT
37

 Each torrent has an infrastructure node called a tracker.

 When a peer joins a torrent, it registers itself with the tracker and periodically informs the

tracker that it is still in the torrent. In this manner, the tracker keeps track of the peers that are

participating in the torrent.

 When a new peer joins the torrent, the tracker randomly selects a subset of peers (for

concreteness, say 50) from the set of participating peers, and sends the IP addresses of these

50 peers to new peer.

 Possessing this list of peers, new peer attempts to establish concurrent TCP connections with

all the peers on this list. All the peers with which new peer succeeds in establishing a TCP

connection will be called as “neighboring peers.”

 As time evolves, some of these peers may leave and other peers (outside the initial 50) may

attempt to establish TCP connections.

 Periodically, peer will ask each of its neighboring peers (over the TCP connections) for the

list of the chunks they have. If peer has L different neighbors, it will obtain L lists of chunks.

With this knowledge, peer will issue requests (again over the TCP connections) for chunks

currently it does not have.

 In deciding which chunks to request, peer uses a technique called rarest first. The idea is to

determine, from among the chunks peer does not have, the chunks that are the rarest among

its neighbors and then request those rarest chunks first. In this manner, the rarest chunks get

more quickly redistributed, aiming to equalize the numbers of copies of each chunk in the

torrent.

Module – 1: Application Layer

SANTOSH K C, Asst. Prof., Dept. of CSE, BIET, Davangere

SVIT
38

 To determine which requests peer responds to, BitTorrent uses a clever trading algorithm.

The basic idea is that peer gives priority to the neighbors that are currently supplying data to

it at the highest rate. Specifically, for each of its neighbors, peer continually measures the

rate at which it receives bits and determines the four peers that are feeding bits at the highest

rate. Peer then reciprocates by sending chunks to these same four peers.

 Every 10 seconds, peer recalculates the rates and possibly modifies the set of four peers.

 In BitTorrent lingo, these four peers are said to be unchoked.

 Importantly, every 30 seconds, peer also picks one additional neighbor at random and sends

it chunks. In BitTorrent lingo, this randomly selected peer is said to be optimistically

unchoked.

 The random neighbor selection also allows new peers to get chunks, so that they can have

something to trade.

 The incentive mechanism for trading just described is often referred to as tit-for-tat.

1.6.2 Distributed Hash Tables (DHTs)

 Centralized version of this simple database will simply contain (key, value) pairs. We query

the database with a key. If there are one or more key-value pairs in the database that match

the query key, the database returns the corresponding values.

 Building such a database is straightforward with client-server architecture that stores all the

(key, value) pairs in one central server.

 P2P version of this database will store the (key, value) pairs over millions of peers.

 In the P2P system, each peer will only hold a small subset of the totality of the (key, value)

pairs. We’ll allow any peer to query the distributed database with a particular key. The

distributed database will then locate the peers that have the corresponding (key, value) pairs

and return the key-value pairs to the querying peer.

 Any peer will also be allowed to insert new key-value pairs into the database. Such a

distributed database is referred to as a distributed hash table (DHT).

 One naïve approach to building a DHT is to randomly scatter the (key, value) pairs across all

the peers and have each peer maintain a list of the IP addresses of all participating peers. In

Module – 1: Application Layer

SANTOSH K C, Asst. Prof., Dept. of CSE, BIET, Davangere

SVIT
39

this design, the querying peer sends its query to all other peers, and the peers containing the

(key, value) pairs that match the key can respond with their matching pairs.

 Such an approach is completely unscalable as it would require each peer to know about all

other peers and have each query sent to all peers.

 An elegant approach to designing a DHT is to first assign an identifier to each peer, where

each identifier is an integer in the range [0, 2
n
-1] for some fixed n.

 This also require each key to be an integer in the same range.

 To create integers out of such keys, we will use a hash function that maps each key (e.g.,

social security number) to an integer in the range [0, 2
n
-1].

Problem of storing the (key, value) pairs in the DHT:

 The central issue here is defining a rule for assigning keys to peers. Given that each peer has

an integer identifier and that each key is also an integer in the same range, a natural approach

is to assign each (key, value) pair to the peer whose identifier is the closest to the key.

 To implement such a scheme, let’s define the closest peer as the closest successor of the key.

 Now suppose a peer, Alice, wants to insert a (key, value) pair into the DHT. Conceptually,

this is straightforward: She first determines the peer whose identifier is closest to the key; she

then sends a message to that peer, instructing it to store the (key, value) pair.

 If Alice were to keep track of all the peers in the system (peer IDs and corresponding IP

addresses), she could locally determine the closest peer. But such an approach requires each

peer to keep track of all other peers in the DHT—which is completely impractical for a large-

scale system with millions of peers.

Circular DHT

To address this problem of scale, let’s now consider organizing the peers into a circle. In this

circular arrangement, each peer only keeps track of its immediate successor and immediate

predecessor (modulo 2
n
).

Module – 1: Application Layer

SANTOSH K C, Asst. Prof., Dept. of CSE, BIET, Davangere

SVIT
40

Each peer is only aware of its immediate successor and predecessor; for example, peer 5 knows

the IP address and identifier for peers 8 and 4 but does not necessarily know anything about any

other peers that may be in the DHT.

Now suppose that peer 3 wants to determine which peer in the DHT is responsible for key 11.

Using the circular overlay, the origin peer (peer 3) creates a message saying “Who is responsible

for key 11?” and sends this message clockwise around the circle. Whenever a peer receives such

a message, because it knows the identifier of its successor and predecessor, it can determine

whether it is responsible for (that is, closest to) the key in question. If a peer is not responsible

for the key, it simply sends the message to its successor. So, for example, when peer 4 receives

the message asking about key 11, it determines that it is not responsible for the key (because its

successor is closer to the key), so it just passes the message along to peer 5. This process

continues until the message arrives at peer 12, who determines that it is the closest peer to key

11. At this point, peer 12 can send a message back to the querying peer, peer 3, indicating that it

is responsible for key 11.

Although each peer is only aware of two neighboring peers, to find the node responsible for a

key (in the worst case), all N nodes in the DHT will have to forward a message around the circle;

N/2 messages are sent on average.

Shortcuts are used to expedite the routing of query messages. Specifically, when a peer receives

a message that is querying for a key, it forwards the message to the neighbor (successor neighbor

or one of the shortcut neighbors) which is the closet to the key.

When peer 4 receives the message asking about key 11, it determines that the closet peer to the

key (among its neighbors) is its shortcut neighbor 10 and then forwards the message directly to

peer 10. Clearly, shortcuts can significantly reduce the number of messages used to process a

query.

Module – 1: Application Layer

SANTOSH K C, Asst. Prof., Dept. of CSE, BIET, Davangere

SVIT
41

Peer Churn

In P2P systems, a peer can come or go without warning. Thus, when designing a DHT, we also

must be concerned about maintaining the DHT overlay in the presence of such peer churn.

To handle peer churn, we will now require each peer to track its first and second successors; for

example, peer 4 now tracks both peer 5 and peer 8. We also require each peer to periodically

verify that its two successors are alive

Let’s now consider how the DHT is maintained when a peer abruptly leaves. For example,

suppose peer 5 in above figure abruptly leaves. In this case, the two peers preceding the departed

peer (4 and 3) learn that 5 has departed, since it no longer responds to ping messages. Peers 4

and 3 thus need to update their successor state information. Let’s consider how peer 4 updates its

state:

1. Peer 4 replaces its first successor (peer 5) with its second successor (peer 8).

2. Peer 4 then asks its new first successor (peer 8) for the identifier and IP address of its

immediate successor (peer 10). Peer 4 then makes peer 10 its second successor.

Let’s say a peer with identifier 13 wants to join the DHT, and at the time of joining, it only

knows about peer 1’s existence in the DHT. Peer 13 would first send peer 1 a message, saying

“what will be 13’s predecessor and successor?” This message gets forwarded through the DHT

until it reaches peer 12, who realizes that it will be 13’s predecessor and that its current

successor, peer 15, will become 13’s successor. Next, peer 12 sends this predecessor and

successor information to peer 13. Peer 13 can now join the DHT by making peer 15 its successor

and by notifying peer 12 that it should change its immediate successor to 13.

1.7 Socket Programming: Creating Network Applications

 A typical network application consists of a pair of programs—a client program and a server

program—residing in two different end systems.

 When these two programs are executed, a client process and a server process are created, and

these processes communicate with each other by reading from, and writing to, sockets.

 When creating a network application, the developer’s main task is therefore to write the code

for both the client and server programs.

Module – 1: Application Layer

SANTOSH K C, Asst. Prof., Dept. of CSE, BIET, Davangere

SVIT
42

1.7.1 Socket Programming with UDP

Before the sending process can push a packet of data out the socket door, when using UDP, it

must first attach a destination address to the packet. After the packet passes through the sender’s

socket, the Internet will use this destination address to route the packet through the Internet to the

socket in the receiving process. When the packet arrives at the receiving socket, the receiving

process will retrieve the packet through the socket, and then inspect the packet’s contents and

take appropriate action.

Example application:

1. The client reads a line of characters (data) from its keyboard and sends the data to the server.

2. The server receives the data and converts the characters to uppercase.

3. The server sends the modified data to the client.

4. The client receives the modified data and displays the line on its screen.

Module – 1: Application Layer

SANTOSH K C, Asst. Prof., Dept. of CSE, BIET, Davangere

SVIT
43

from socket import *

serverName = ‘hostname’

serverPort = 12000

clientSocket = socket(socket.AF_INET, socket.SOCK_DGRAM)

message = raw_input(’Input lowercase sentence:’)

clientSocket.sendto(message,(serverName, serverPort))

modifiedMessage, serverAddress = clientSocket.recvfrom(2048)

print modifiedMessage

clientSocket.close()

from socket import *

serverPort = 12000

serverSocket = socket(AF_INET, SOCK_DGRAM)

serverSocket.bind((’’, serverPort))

print ”The server is ready to receive”

while 1:

message, clientAddress = serverSocket.recvfrom(2048)

modifiedMessage = message.upper()

serverSocket.sendto(modifiedMessage, clientAddress)

UDPClient.py

Here is the code for the client side of the application:

UDPServer.py

1.7.2 Socket Programming with TCP

 Unlike UDP, TCP is a connection-oriented protocol. This means that before the client and

server can start to send data to each other, they first need to handshake and establish a TCP

connection.

Module – 1: Application Layer

SANTOSH K C, Asst. Prof., Dept. of CSE, BIET, Davangere

SVIT
44

from socket import *

serverName = ’servername’

serverPort = 12000

clientSocket = socket(AF_INET, SOCK_STREAM)

clientSocket.connect((serverName,serverPort))

sentence = raw_input(‘Input lowercase sentence:’)

clientSocket.send(sentence)

modifiedSentence = clientSocket.recv(1024)

print ‘From Server:’, modifiedSentence

clientSocket.close()

 One end of the TCP connection is attached to the client socket and the other end is attached

to a server socket.

 When creating the TCP connection, we associate with it the client socket address (IP address

and port number) and the server socket address (IP address and port number). With the TCP

connection established, when one side wants to send data to the other side, it just drops the

data into the TCP connection via its socket. This is different from UDP, for which the server

must attach a destination address to the packet before dropping it into the socket.

 During the three-way handshake, the client process knocks on the welcoming door of the

server process. When the server “hears” the knocking, it creates a new door— more

precisely, a new socket that is dedicated to that particular client.

TCPClient.py

Module – 1: Application Layer

SANTOSH K C, Asst. Prof., Dept. of CSE, BIET, Davangere

SVIT
45

from socket import *

serverPort = 12000

serverSocket = socket(AF_INET,SOCK_STREAM)

serverSocket.bind((‘’,serverPort))

serverSocket.listen(1)

print ‘The server is ready to receive’

while 1:

connectionSocket, addr = serverSocket.accept()

sentence = connectionSocket.recv(1024)

capitalizedSentence = sentence.upper()

connectionSocket.send(capitalizedSentence)

connectionSocket.close()

TCPServer.py

