
Advanced Computer Networks (ACA)

Prof. Santosh K C
Asst. Prof.

CSE Dept.

B.I.E.T.

Davangere-04

1

Pipeline Review

0

1

Read

address

Instruction

memory

Instruction

[31-0]
Address

Write

data

Data

memory

Read

data

MemWrite

MemRead

1

0

MemToReg

4

Shift

left 2

Add

ALUSrc

Zero

Result

ALU

ALUOp

Instr [15 - 0]
RegDst

Read

register 1

Read

register 2

Write

register

Write

data

Read

data 1

Read

data 2

Registers

RegWrite

Add

Instr [15 - 11]

Instr [20 - 16]

0

1

IF/ID

ID/EX

EX/MEM

MEM/WBControl

M

WB

WB

P

C

1

0

PCSrc

Sign

extend

EX

M

WB

2

Here is the example instruction sequence used to
illustrate pipelining on the previous page

lw $8, 4($29)

sub $2, $4, $5
and $9, $10, $11
or $16, $17, $18
add $13, $14, $0

The instructions in this example are independent

 Each instruction reads and writes completely different
registers

 Our datapath handles this sequence easily

But most sequences of instructions are not
independent!

Our examples are too simple

3

An example with dependences

Read after Write dependences

sub $2, $1, $3
and $12, $2, $5
or $13, $6, $2
add $14, $2, $2
sw $15, 100($2)

Dependences are a property of how the
computation is expressed

An example with dependences

and $12, $2, $5
or $13, $6, $2
add $14, $2, $2

sub $2, $1, $3

sw $15, 100($2)

There are several dependences in this code fragment

 The first instruction, SUB, stores a value into $2

 That register is used as a source in the rest of the instructions

This is no problem for 1-cycle and multicycle datapaths
 Each instruction executes completely before the next begins

 This ensures that instructions 2 through 5 above use the new
value of $2 (the sub result), just as we expect.

How would this code sequence fare in our pipelined
datapath?

4

5

Clock cycle

1 2 3 4 5 6 7 8 9

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

The SUB does not write to register $2 until clock cycle 5
causeing 2 data hazards in our pipelined datapath

 The AND reads register $2 in cycle 3. Since SUB hasn’t

modified the register yet, this is the old value of $2

 Similarly, the OR instruction uses register $2 in cycle 4, again
before it’s actually updated by SUB

Data hazards in the pipeline diagram

6

Clock cycle

1 2 3 4 5 6 7 8 9

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

The ADD is okay, because of the register file design
 Registers are written at the beginning of a clock cycle

 The new value will be available by the end of that cycle

The SW is no problem at all, since it reads $2 after the
SUB finishes

Things that are okay

7

One Solution To Data Hazards

sub $2, $1, $3
and $12, $2, $5
or $13, $6, $2
add $14, $2, $2

sw $15, 100($2)

Since it takes two instruction cycles to get the value stored,

one solution is for the assembler to insert no-ops or for

compilers to reorder instructions to do useful work while

the pipeline proceeds

A software solution to data hazards

sub $2, $1, $3
sll $0, $0, $0
sll $0, $0, $0
and $12, $2

,
$5

or $13,
add $14,
sw $15,

$6, $2
$2, $2
100($2)

8

A fancier pipeline diagram

DMReg RegIM

DMReg RegIM

DMReg RegIM

DMReg RegIM

DMReg RegIM

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

1 2 3 4

Clock cycle

5 6 7 8 9

9

Forwarding

DMReg RegIM

DMReg RegIM

DMReg RegIM

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

1 2 3 4 5 6 7

Since the pipeline registers already contain the ALU
result, we could just forward the value to later
instructions, to prevent data hazards

• In clock cycle 4, the AND instruction can get the value of $1 -
$3 from the EX/MEM pipeline register used by SUB

• Then in cycle 5, the OR can get that same result from the MEM/
WB pipeline register being used by SUB

Clock cycle

Forwarding Implementation

Forwarding requires …

(a) Recognizing when a potential data hazard

exists, and

(b) Revising the pipeline to introduce

forwarding paths …

We’ll do those revisions next time

10

11

What about stores?

DMReg RegIM

DMReg RegIM

add $1, $2, $3

sw $1, 0($4)

DMReg RegIM

DMReg RegIM

add $1, $2, $3

sw $4, 0($1)

Two “easy” cases:
1 2 3 4 5 6

1 2 3 4 5 6

