
Advanced Computer Networks (ACA)

Prof. Santosh K C
Asst. Prof.

CSE Dept.

B.I.E.T.

Davangere-04



1

Pipeline Review

0

1

Read 

address

Instruction  

memory

Instruction

[31-0]
Address

Write  

data

Data 

memory

Read  

data

MemWrite

MemRead

1

0

MemToReg

4

Shift  

left 2

Add

ALUSrc

Zero  

Result

ALU

ALUOp

Instr [15 - 0]
RegDst

Read 

register 1

Read 

register 2

Write 

register

Write  

data

Read  

data 1

Read  

data 2

Registers

RegWrite

Add

Instr [15 - 11]

Instr [20 - 16]

0

1

IF/ID

ID/EX

EX/MEM

MEM/WBControl

M

WB

WB

P  

C

1

0

PCSrc

Sign 

extend

EX

M

WB



2

Here is the example instruction sequence used to 
illustrate pipelining on the previous page

lw $8, 4($29)

sub $2, $4, $5 
and $9, $10, $11 
or $16, $17, $18 
add $13, $14, $0

The instructions in this example are independent

 Each instruction reads and writes completely different 
registers

 Our datapath handles this sequence easily

But most sequences of instructions are not
independent!

Our examples are too simple



3

An example with dependences

Read after Write dependences

sub $2, $1, $3 
and $12, $2, $5 
or $13, $6, $2
add $14, $2, $2 
sw $15, 100($2)

Dependences are a property of how the 
computation is expressed



An example with dependences

and $12, $2, $5
or $13, $6, $2
add $14, $2, $2

sub $2, $1, $3

sw $15, 100($2)

There are several dependences in this code fragment

 The first instruction, SUB, stores a value into $2

 That register is used as a source in the rest of the instructions

This is no problem for 1-cycle and multicycle datapaths
 Each instruction executes completely before the next begins

 This ensures that instructions 2 through 5 above use the new 
value of $2 (the sub result), just as we expect.

How would this code sequence fare in our pipelined 
datapath?

4



5

Clock cycle

1 2 3 4 5 6 7 8 9

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

The SUB does not write to register $2 until clock cycle 5 
causeing 2 data hazards in our pipelined datapath

 The AND reads register $2 in cycle 3. Since SUB hasn’t 

modified the register yet, this is the old value of $2

 Similarly, the OR instruction uses register $2 in cycle 4, again
before it’s actually updated by SUB

Data hazards in the pipeline diagram



6

Clock cycle

1 2 3 4 5 6 7 8 9

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

The ADD is okay, because of the register file design
 Registers are written at the beginning of a clock cycle

 The new value will be available by the end of that cycle

The SW is no problem at all, since it reads $2 after the 
SUB finishes

Things that are okay



7

One Solution To Data Hazards

sub $2, $1, $3
and $12, $2, $5
or $13, $6, $2
add $14, $2, $2

sw $15, 100($2)

Since it takes two instruction cycles to get the value stored, 

one solution is for the assembler to insert no-ops or for 

compilers to reorder instructions to do useful work while 

the pipeline proceeds

A software solution to data hazards

sub $2, $1, $3
sll $0, $0, $0
sll $0, $0, $0
and $12, $2

,
$5

or $13,
add $14,
sw $15,

$6, $2
$2, $2 
100($2)



8

A fancier pipeline diagram

DMReg RegIM

DMReg RegIM

DMReg RegIM

DMReg RegIM

DMReg RegIM

sub  $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

1 2 3 4

Clock cycle

5 6 7 8 9



9

Forwarding

DMReg RegIM

DMReg RegIM

DMReg RegIM

sub  $2, $1, $3

and $12, $2, $5

or $13, $6, $2

1 2 3 4 5 6 7

Since the pipeline registers already contain the ALU 
result, we could just forward the value to later 
instructions, to prevent data hazards

• In clock cycle 4, the AND instruction can get the value of $1 -
$3 from the EX/MEM pipeline register used by SUB

• Then in cycle 5, the OR can get that same result from the MEM/ 
WB pipeline register being used by SUB

Clock cycle



Forwarding Implementation

Forwarding requires …

(a) Recognizing when a potential data hazard 

exists, and

(b) Revising the pipeline to introduce 

forwarding paths …

We’ll do those revisions next time

10



11

What about stores?

DMReg RegIM

DMReg RegIM

add $1, $2, $3

sw  $1, 0($4)

DMReg RegIM

DMReg RegIM

add $1, $2, $3

sw $4, 0($1)

Two “easy” cases:
1 2 3 4 5 6

1 2 3 4 5 6


