Advanced Computer Networks (ACA)

Prof. Santosh K C
Asst. Prof.

CSE Dept.

B.I.LE.T.
Davangere-04

Pipeline Review

ontrol

RegWrite

Read

Read Instructio

address

Instruction
memory

[31-

egister 1
Read

egister 2

rite

egister
rite Registers
ata

ALUSIc

MemWrite

Address

Data
memory

Reaf

Instr[15- 0] Sign

extend ==k
Instr [20 - 16]

RegDst

Instr [15- 11]

dat;

MemRead

emToReg

Qur examples are too simple

Here is the example instruction sequence used to
illustrate pipelining on the previous page

Tw $8, 4($29)

sub $2, $4, $5
and $9, $10, $11
or $16, $17, $18
add $13, $14, $0

The instructions in this example are independent

+« Each instruction reads and writes completely different
registers

« Our datapath handles this sequence easily
But most sequences of instructions are not
independent!

An example with dependences

Read after Write dependences

sub $2, $1, $3

and $12, $2, $5
or $13, $6, $2
add $14, $2, $2
Sw $15, 100(%$2)

Dependences are a property of how the
computation is expressed

An example with dependences

sub $2, $1, $3
and $12, $2, $5
or $13, $6, $2
add $14, $2, $2

sw $15, 100($2)

There are several dependences in this code fragment

% The first instruction, SUB, stores a value into $2

% That register is used as a source in the rest of the instructions
This is no problem for 1-cycle and multicycle datapaths

« Each instruction executes completely before the next begins

++ This ensures that instructions 2 through 5 above use the new
value of $2 (the sub result), just as we expect.

How would this code sequence fare in our pipelined
datapath?

Data hazards in the pipeline diagram

Clock cycle
1 2 3 4 5 6 7 8

sub $2,$1,$3 | IF [ID | EX [MEM| WB |

and $12, $2, $5 [IF T ID [EX [MEM] WB]

or $13, $6, $2 [[IF [1D [EX [MEM[WB]

add $14, $2, $2 [IF [D [EX [MEM] WB]

sw $15, 100($2) [IF T ID | EX [MEM[WB]

The SUB does not write to register $2 until clock cycle 5
causeing 2 data hazards in our pipelined datapath
% The AND reads register $2 in cycle 3. Since SUB hasn'’t
modified the register yet, this is the old value of $2

<> S|m|IarIy the OR instruction uses register $2 in cycle 4, agam
before it's actually updated by SUB

Things that are okay

Clock cycle
1 2 3 4 5 6

sub$2,$1,$3 [IF | ID | EX [MEM[WB]

and $12, $2, $5 [IF T D] EX][MEM]WB]

or $13, $6, $2 [IF T D [EX[MEM]WB]

add $14, $2, $2 [IF [D [EX [MEM]WB]

sw $15, 100($2) [IF T D] EX][MEM]WB]

The ADD is okay, because of the register file design
+« Registers are written at the beginning of a clock cycle
+«» The new value will be available by the end of that cycle

The SW is no problem at all, since it reads $2 after the
SUB finishes

One Solution To Data Hazards

$2, $1, $3 sub $2, $1, $3
$12, $2, $5 sl1 $0, $0, $O
$13, $6, $2 sl1 $0, $0, $O
$14, $2, $2 and $12, $2 $5
$15, 100($2) or $13, $6, $2
add $14, $2, $2
sw $15, 100(%2)

Since it takes two instruction cycles to get the value stored,
one solution is for the assembler to insert no-ops or for
compilers to reorder instructions to do useful work while
the pipeline proceeds

A software solution to data hazards | 7

A fancier pipeline diagram

Clock cycle

1 2 3 4

w s CEHEHIE:
woss D)
H

or $13,%6, 52

add $14, 52, $2

sw $15, 100(52)

Forwarding

Since the pipeline registers already contain the ALU
result, we could just forward the value to later
instructions, to prevent data hazards

* In clock cycle 4, the AND instruction can get the value of $1 -
$3 from the EX/MEM pipeline register used by SUB

* Thenin cycle 5, the OR can get that same result from the MEM/
\WB pipeline register being used by SUB

Clock cycle
1 2 3

sub 52, $1, 63 n I Ell”

and $12, 52, $5 n I E

or $13,%6, 52

Forwarding Implementation

Forwarding requires ...

(a) Recognizing when a potential data hazard
exists, and

(b) Revising the pipeline to introduce
forwarding paths ...

We’'ll do those revisions next time

What about stores?

Two “easy” cases:

add $1, 82, $3

add $1,$2,$3

sw $1, 0(54)

