Bapuji Educational Association (Regd.)

BAPUJI INSTITUTE OF ENGINEERING AND TECHNOLOGY, DAVANAGERE-04 DEPARTMENT OF MATHEMATICS

Assignment - 1 (covers Module - 1 4 2)

Sub: Calculus and Differential Equations (21MAT11)

1. Find the angle between Radius vector & tangent to the curve $r^m cosm\theta = a^m$.

2. Find the angle of intersection between curves $r = \frac{a}{1+\cos\theta}$ and $r = \frac{b}{1-\cos\theta}$.

3. Find the Pedal equation of the curve $\frac{2a}{r} = (1 + \cos\theta)$.

4. Find the radius of curvature for the curve $x^2y = a(x^2 + y^2)$ at the point (-2a,2a).

5. Find the Radius of curvature of the curve $y^2 = \frac{a^2(a-x)}{x}$ where the curve meets x-axis.

6. Find the Radius of curvature for the curve $r = a(1 + \cos\theta)$.

7. Expand $tan^{-1}x$ in powers of (x-1) upto fourth degree terms.

8. Using Maclaurin's series expand $\log (1 + e^x)$ upto term containing x^4 .

9. Evaluate a) $\lim_{x \to 0} \left(\frac{a^x + b^x + c^x + d^x}{4} \right)^{\frac{1}{x}}$ b) $\lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{\frac{1}{x^2}}$ c) $\lim_{x \to 0} \left(\frac{(1+x)^{1/x} - e}{x} \right)$

10. If u = f(x - y, y - z, z - x) then Show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$.

11. If $u = x^2 + y^2 + z^2$, v = xy + yz + zx, w = x + y + z then find $J\left(\frac{u, v, w}{x, y, z}\right)$.

12. Find the extreme values of the function $f(x, y) = x^3y^2(1 - x - y)$ for $x, y \neq 0$.

Bapuji Educational Association (Regd.)

BAPUJI INSTITUTE OF ENGINEERING AND TECHNOLOGY, DAVANAGERE-04 DEPARTMENT OF MATHEMATICS

Assignment - 2 (Covers Module -3,445)

Sub: Calculus and Differential Equations (21MAT11)

1. Solve
$$y(2x - y + 1)dx + x(3x - 4y + 3)dy = 0$$

2. Solve
$$(ylogx - 2)ydx = xdy$$
.

3. Solve
$$\frac{dy}{dx} + x\sin 2y = x^3\cos^2 y$$
.

- 4. Find the orthogonal trajectory of the family $r^n cosn\theta = a^n$.
- 5. A body originally at $80^{\circ}C$ cools to $60^{\circ}C$ in 20 minutes the temperature of air being $40^{\circ}C$. What will be the temperature of the body after 40 minutes?
- 6. Solve $p^2 2p sinh x 1 = 0$.
- 7. Solve (px y)(py + x) = 2p by reducing into Clairaut's form taking substitution $X = x^2$, $Y = y^2$.

8. Solve i)
$$(4D^4 - 8D^3 - 7D^2 + 11D + 6)y = 0$$
 ii) $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = e^{2x} + \cos x + 4$.

- 9. Solve y'' + 4y = tan2x by the method of variation of parameter.
- 10. Solve $x^2y'' 5xy' + 8y = 2\log x$.

11. Solve
$$(1+x)^2 \frac{d^2y}{dx^2} + (1+x)\frac{dy}{dx} + y = 2\sin[\log(1+x)]$$
.

- 12. Find the Rank of the matrix $A = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & -2 & 1 \\ 1 & -1 & 4 & 0 \\ -2 & 2 & 8 & 0 \end{bmatrix}$ by reducing it into Echelon form.
- 13. For what values of λ and μ the system of equations x + y + z = 6, x + 2y + 3z = 10, $x + 2y + \lambda z = \mu$ may have i) Unique solution ii) Infinite number of solution iii) No solution.
- 14. Solve the system of equations x + y + z = 9, x 2y + 3z = 8, 2x + y z = 3 by Gauss elimination method.
- 15. Solve the system of equations by Gauss Seidel Method $x + y + 54z = 110, \ 27x + 6y z = 85, \ 6x + 15y + 2z = 72.$
- 16. Find the Largest Eigen value and the corresponding Eigen vector of

$$A = \begin{bmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{bmatrix}$$
 using power method. Take $[1,0,0]^T$ as initial vector.

14-1-2022