Bapuji Educational Association (Regd.) Bapuji Institute of Engineering and Technology, Davangere - 04

DEPARTMENT OF MATHEMATICS

Question Bank

TRANSFORM CALCULUS, FOURIER SERIES AND NUMERICAL TECHNIQUES (18MAT31)

1.
$$L[e^{-2t}(2\cos 5t - \sin 5t) + \cos^2 3t]$$

2.
$$L\left[\frac{\cos 2t - \cos 3t}{t} + t \sin t + 2 \sin 3t \cos 5t\right]$$

$$f(t) = i \frac{(k \cdot 0 < t < \frac{a}{2})}{(-K \cdot \frac{a}{2} < t < a)}$$
 where $f(t+a) = f(t)$ Show

3. Given

where f(t+a) = f(t) Show that $L[f(t)] = \frac{k}{s} \tanh (sa/4)$

find

 $f(t) = i \frac{(E \sin \omega t \quad 0 \le t < \frac{\pi}{\omega})}{(0 \quad \frac{\pi}{\omega} \le t < \frac{2\pi}{\omega})}$ is defined by 4. A periodic function of period ω L[f(t)]

$$\begin{pmatrix}
1 & 0 < t \le 1 \\
f(t) = \ddot{\iota}(t & 1 < t \le 2)
\end{pmatrix}$$

 $(t^2 t>2)$ 5. Express in terms of unit step function and hence find its Laplace transform.

$$f(t) = i (1, \pi < t \le 2\pi)$$

in terms of unit step function and hence find its Laplace 6. Express transform.

- 7. Find $\int_{1}^{-c^{1}} \left[\frac{4s+5}{(s+1)^{2}(s+2)} + \log \left(\frac{s+a}{s+b} \right) + \frac{s+1}{s^{2}+6s+9} \right] c^{2}$
- 8. By using convolution theorem, find $\int_{L}^{-\dot{\epsilon}^1} \left[\frac{1}{(s^2+1)(s-1)} \right]^{\dot{\epsilon}}$
- 9. By using convolution theorem, find $\int_{I}^{-\delta^{1}} \left| \frac{s}{(s^{2}+a^{2})^{2}} \right|^{\delta}$
- 10. Solve $y^{II} + 4y^{I} + 4y = e^{-t}$ with the initial conditions $y(0) = y^{I}(0) = 0$
- 11. Obtain the Fourier series of $f(x) = \frac{\pi x}{2} \in 0 < x < 2\pi$. hence deduce that $1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \dots = \frac{\pi}{4}$
- 12. Obtain the fourier series of $f(x) = \begin{cases} -\pi, -\pi < \lambda < 0 \\ x, 0 < \lambda < \pi \end{cases}$
- 13. Obtain the Fourier series of $f(x)=x-x^2$ in -1 < x < 1
- 14. Obtain the fourier series of $f(x) = \begin{cases} \pi x, 0 \le \land x \le 1 \\ \pi(2-x), 1 \le \land x \le 2 \end{cases}$
- 15. Obtain the half range sine series of $f(x) = x^2$ in $0 < x < \pi$

17. Given the following table

χ^0	0	60	120	180	240	300
у	7.9	7.2	3.6	0.5	0.9	6.8

Obtain the Fourier series neglecting terms higher than first harmonics

18. Obtain the constant term and coefficient first cosine and sine terms in the Fourier expansion of y from the following table

X	0	1	2	3	4	5
у	9	18	24	28	26	20

19. Obtain the constant term and coefficient of $ssin\theta \wedge sin 2\theta$ in the Fourier expansion of y from the following table

χ^0	0	60	120	180	240	300	360
У	0	9.2	14.4	17.8	17.3	11.7	0

20. The following data gives the variations of periodic current over a period.find the direct current part of the variable current and obtain the amplitude of the first harmonic

t sec	0	<u>T</u>	<u>T</u>	<u>T</u>	<u>2T</u>	<u>5T</u>	T
		6	3	2	3	6	
A	9.0	18.2	24.4	27.8	27.5	22.0	9.0
amps							

 $f(x) = \begin{cases} 1 & \text{for } |x| \le a \\ 0 & \text{for } |x| > a \end{cases}$

and hence deduce that

Find the Fourier transform of

$$\int_{-\infty}^{\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$$

- 22. Obtain Fourier Sine transform of $f(x) = i e^{-|x|}$. Hence show that $\int_{0}^{\infty} \frac{x \sin mx}{1 + x^{2}} dx = \frac{\pi e^{-m}}{2}, \text{ mid } 0$
- 23. Find the Fourier Transform for the function $f(x) = \begin{cases} 1 & \text{for } |x| \le a \\ 0 & \text{for } |x| > a \end{cases}$ and hence evaluate

$$\int_{0}^{\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$$

- 24. Find the Fourier Sine and Cosine Transform of $f(x) = \begin{cases} x \text{ for } 0 < x < 2 \\ 0 \text{ for Otherwise} \end{cases}$
- 25. Prove that $(a) Z_T(n^k) = -z \frac{d}{dz} Z_T(n^{k-1})(b) Z_T(n^2)$
- 26. Find the Z-transform of (i) $\cosh n\theta$ (ii) $\sinh n\theta$
- 27. Given $Z_T(U_n) = \frac{2z^2 + 3z + 4}{(z-3)^3}$, |z| > 3 Find U_0 , $U_1 \wedge U_2$

28. Find the Inverse Z-transform of
$$Z_T^{-1} \left[\frac{5z}{(2-z)(3z-1)} \right]$$

- 29. Solve the Difference equation $U_{n+2}-5U_{n+1}+6U_n=0$ by using Z-transform
- 30. Find the Z-transform of (i) $\cos n\theta$ (ii) $\sin n\theta$

31. Given
$$Z_T(U_n) = \frac{2z^2 + 3z + 4}{(z - 3)^3}, |z| > 3$$
 Find $U_0, U_1 \wedge U_2$

32. Use Taylor's series method to solve
$$\frac{dy}{dx} = 2y + 3e^x$$
, $y(0) = 0$ find y at $x = 0.2$

- 33. Find by Taylor's series method the value of y at x = 0.1 and x = 0.2 up to five places of decimals from dy/dx = x²y-1, (consider upto fourth degree terms).
 34. Use Taylor's series method the value of y at x = 0.1 and x = 0.2 to four decimal places from
- 34. Use Taylor's series method the value of y at x = 0.1 and x = 0.2 to four decimal places from $\frac{dy}{dx} = x^2 + y^2$, y(0) = 1, consider up to Third degree terms.
- 35. Use Modified Euler's method to find an approximate value of y when x = 0.2 given that $\frac{dy}{dx} = 3x + \frac{y}{2} \wedge y(0) = 1$.take h = 0.1. Perform three iterations in each stage.
- 36. Given $\frac{dy}{dx} = 3x + \frac{y}{2}$, y = 1 at x = 0. Use Modified Euler's method to find y(0.2) taking h = 0.2
- 37. Using Modified Euler's method to find y(20.2) and y(20.4) given that $\frac{dy}{dx} = \log_{10} \left(\frac{x}{y}\right)$ with y(20)=5 taking h=0.2
- 38. Given $\frac{dy}{dx} = x(y)^{\frac{1}{3}}$, y(1) = 1. Use Runge-Kutta fourth order method to find y at x = 1.1
- 39. Given $\frac{dy}{dx} = x^2(1+y) \wedge y(1) = 1$, y(1.1) = 1.233, y(1.2) = 1.548, y(1.3) = 1.979 evaluate y(1.4) by Milne's Predictor-Corrector method
- 40. Given $\frac{dy}{dx} = x y^2 \wedge y(0) = 0$, y(0.2) = 0.02, y(0.4) = 0.0795, y(0.6) = 0.1762

Compute y at x=0.8 by Milne's Predictor-Corrector method.

- 41. Given $\frac{dy}{dx} = x^2(1+y)$, y(1)=1, y(1.1)=1.233, y(1.2)=1.548, y(1.3)=1.979 determine y(1.4) by Adams-Bashforth method. Use Corrector formula twice.
- 42. Given $\frac{dy}{dx} = x y^2$ and the data y(0) = 0, y(0.2) = 0.02, y(0.4) = 0.0795, y(0.6) = 0.1762 Compute y at x=0.8 by applying Adams-Bashforth method.
- 43. Use Modified Euler's method to find an approximate value of y when x = 0.2 given that $\frac{dy}{dx} = x + y \wedge y = 1$ when x = 0.take h = 0.1. Perform two iterations in each stage
- 44. Use Runge-Kutta method of fourth order solve $y^{11} x y^1 y = 0$, y(0) = 1, $y^1(0) = 0$ find y and z at x = 0.2
- 45. Use Runge-Kutta method of fourth order solve $y^{11}-x^2y^1-2xy=1$, y(0)=1, $y^1(0)=0$ Evaluate y(0.1)
- 46. Given $y^{11} = y^3$, y(0) = 10, $y^1(0) = 5$. Evaluate y(0.1) using Runge-Kutta method of fourth order.

47. Apply Milne's method to solve $\frac{d^2y}{dx^2} = 1 - 2y\frac{dy}{dx}$, given y(0) = 0, $y^1(0) = 0$.compute y(0.8) given

X	0	0.2	0.4	0.6
y	0	0.02	0.079	0.176
			5	2
v^1	0	0.199	0.393	0.568
		6	7	9

- 48. Given $y^{11} x^2 y^1 2xy = 1$ with the initial conditions $y(0) = 1, y^1(0) = 0$, compute y(0.1) using fourth order Runge-Kutta method.
- 49. Apply Milne's method to compute y(0.8) given that

$$\frac{d^2y}{dx^2} = 1 - 2y \qquad \frac{dy}{dx}$$
 and the following table of initial values

X	0	0.2	0.4	0.6
у	0	0.02	0.0795	0.1762
Y^1	0	0.1996	0.3937	0.5689

50. State and prove Euler's Equation