
Chapter 4

Maxwell’s Equations

4.1 Fundamentals of vector calculus

4.1.1 Dot product or Scalar product

The dot product of two vectors is defined as follows

®a.®b = abcosθ (4.1)

here θ is the angle between two vectors. a and b are the

magnitudes of ®a and ®b. If ®a = ax î + ay ĵ + az ẑ and ®b =
bx î + by ĵ + bz ẑ then the dot product or scalar product is

given by

®a.®b = axbx + ayby + azbz (4.2)

The dot product of two vectors is a scalar quantity.

Physical Significance The dot product is mathemati-

cally put forward and could be applied in physics under

suitable circumstances. For example the work done is

maximum when the displacement is along the force. Thus

work done is defined as the dot product of force ( ®F) and

displacement( ®d) and is a scalar quantity. Hence W = ®F . ®d.

4.1.2 Vector product or Cross product

The vector product of two vectors is defined as follows

®a × ®b = a b sinθ n̂ (4.3)

here θ is the angle between two vectors. a and b are the

magnitudes of ®a and ®b. n̂ is a unit vector perpendicular to

both ®a and ®b. If ®a = ax î+ay ĵ+az ẑ and ®b = bx î+by ĵ+bz ẑ

then their cross product is given by

®a × ®b =

�

�

�

�

�

�

î ĵ k̂

ax ay az
bx by bz

�

�

�

�

�

�

(4.4)

The cross product of two vectors is a vector quantity.

Physical Significance The cross product is put forward

in mathematics an could be applied in physics under suit-

able circumstances. For a rotating body the moment of

linear momentum is the angular momentum. The angu-

lar momentum acts in a direction perpendicular to momen-

tum and the radius vector. Thus angular momentum (®L) is

given by the cross product of radius vector (®r) and linear

momentum ( ®p) and hence ®L = ®r × ®p.

4.1.3 Scalar field

It is a function of a space whose value at each point is a

scalar quantity. For example potential setup by a charge in

space.

4.1.4 Vector field

It is a function of a space whose value at each point is

a vector quantity. Consider a region in the flowing water.

Each and every point can be associated with a vector whose

magnitude represents the speed of flow and direction gives

the direction of flow. Thus the whole region could be imag-

ined filled with vectors and is an example of vector field.

Consider a region surrounding a point charge. The electric

field at each and every point surrounding the charge could

be represented by vectors and hence is a vector field.

4.1.5 The ∇ Operator

In mathematics the following operator is used called ∇ op-

erator. When this operator acts on a scalar quantity it in-

structs to differentiate the scalar quantity. The operation of

∇ on a scalar quantity results in a vector quantity. The ∇
operator is given by

∇ = î
∂

∂x
+ ĵ
∂

∂y
+ k̂
∂

∂z
(4.5)

Let T be a scalar function. Then ∇T states that the ∇
acts on T . There are three ways in which ∇ can act.

1. On a scalar function ∇T called the Gradient.

2. On a vector function via the dot product ∇. ®A called

the Divergence.

3. On a vector function via the cross product ∇× ®A called

the Curl.
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4.1.6 The Gradient

Consider a scalar function V . The operator ∇ acting on the

scalar function V is given by

∇V = î
∂V

∂x
+ ĵ
∂V

∂y
+ k̂
∂V

∂z
(4.6)

The gradient ∇V points along the maximum variation of

the function V and the magnitude of ∇V gives the rate of

change in the maximal direction.

Physical significance: Let us consider a positive point

charge in space. Let the potential set up by the charge in

the surrounding be V and is a scalar quantity. The potential

decreases as the distance from the charge increases. Thus

the gradient of potential results in the electric field strength

which is a vector quantity. This could be written as

®E = −∂V
∂r

r̂ (4.7)

Here r is the position vector and r̂ is the unit vector along

position vector. The negative sign indicates the decrease in

potential. Thus the above equation could be written as

®E = −∇V =
∂V

∂x
î +
∂V

∂y
ĵ +
∂V

∂z
k̂ (4.8)

Thus the Electric field strength is defined as negative of

gradient of potential also known as grad V .

4.1.7 The Divergence

The divergence of a vector field is mathematically written

as ∇. ®E . The vector field E is represented by ®E = Ex î +

Ey ĵ + Ez k̂. From the definition of the ∇ we can construct

divergence as

∇. ®E =
(

î
∂

∂x
+ ĵ
∂

∂y
+ k̂
∂

∂z

)

.
(

Ex î + Ey ĵ + Ez k̂
)

∇. ®E = ∂Ex

∂x
+

∂Ey

∂y
+

∂Ez

∂z
(4.9)

From the equation 4.9 we observe that the divergence of a

vector field is a scalar quantity.

Physical significance : The physical significance of the

divergence of a vector function is it measures how much

the vector E spreads out (diverges) from a point of con-

sideration. For example if we consider a positive charge

in space the field lines diverge and hence it is positive di-

vergence. For a negative charge the field lines converge

and hence it is negative divergence. If the field lines or

parallel then it iszero divergence. See fig. 4.1.

Figure 4.1: Positive, Negative and Zero Divergence

4.1.8 The Curl

The curl of a vector field is could be constructed as follows

∇ × ®H =
(

î
∂

∂x
+ ĵ
∂

∂y
+ k̂
∂

∂z

)

×
(

Hx î + Hy ĵ + Hz k̂
)

∇ × ®H =
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�

�

�
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�
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∂
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∂
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∂
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�
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�

(4.10)

The equation 4.10 represents curl of ®H and also it is evident

that curl of a vector is a vector quantity.

Physial significance : The curl of a vector function is a

measure how much field swirls (curls) around the point of

consideration. Consider a wire carrying electric current.

This sets magnetic field surrounding the wire. Consider a

point on the wire. The magnetic field lines curl or swirl

around the point. Higher the value of ®H around the point

stronger will be the curl. If the field lines purely parallel

then it represents zero curl around the point. See fig 4.2.

Figure 4.2: Curl of a magnetic field
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4.2 Line, Surface and Volume inte-

grals

4.2.1 Line integral

Line integral is an expression of the form

∫ A

P

®A. ®dl (4.11)

here ®A represents the vector field and dl represents a in-

Figure 4.3: Line Integral

finitesimally small length at a point M along the path PQ

in the field. The dot product ®A.vecdl and θ is the angle

made dl with ®A. For a closed path the integral is written as

∮

®A. ®dl (4.12)

∮

is the symbol used for closed contour integral. This is

also called as circulation of ®A around the closed path. The

Figure 4.4: Circulation of vector

line integral concept can be applied to calculate the poten-

tial difference between to points in an electric field.

4.2.2 Surface integral

Consider a surface of area S in a vector field ®A. consider

a small infinitesimal area dS on the surface around point

M as in the figure. Consider n̂ a unit vector normal to ds

and dS n̂ represents area vector of ®dS. The surface integral

over the entire surface S is given by

∫

s

®A. ®dS (4.13)

Here
∫

s
is the symbol used for surface integral. The sur-

Figure 4.5: Surface Integral

face integral gives the net outward flux of the vector field

through the surface. For a closed surface the surface inte-

gral is given by

∮

s

®A. ®dS (4.14)

In case of surface integral for a closed surface the n̂ chosen

outwards. The surface integral could be applied to calcu-

late the net flux of the electric field through a surface in the

electric field.

4.2.3 Volume integral

Figure 4.6: Volume Integral

Consider a volume charge distribution in which charges

are continuously distributed. Let v be the volume through

which the charges are distributed. Consider a point M in-

side the charge distribution. Let dv be a small volume

around a point M . let ρv be the density of charges at M
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and is a scalar quantity. The net charge in the volume is

given by volume integral of the form

∮

v

ρvdv (4.15)

here
∮

v
is the symbol for volume integral.

4.3 Some Theorems of Electrostat-

ics, Electricity, Magnetism and

Electromagnetic induction

4.3.1 Gauss flux theorem - Gauss’ law in

electrostatics

Consider a region in space consisting of charges. Let a

surface of any shape enclose these charges and is called a

Gaussian surface. Let q be the charge enclosed by a closed

surface S. The closed surface could be considered to be

made up of number of elementary surfaces dS. If ®D is the

electric flux density at dS then the surface integral gives

the total electric flux over the surface S could be obtained

as

Figure 4.7: Gauss’ Flux Theorem - Electrostatics

φ =

∮

s

®D. ®dS =
∑

q (4.16)

here φ is the total flux and
∑

q = (q1 + q2 + ...) is the total

charge enclosed by the surface.

4.3.2 Gauss Divergence Theorem

Divergence of ®D

Consider a vector field ®D. Consider a point P in the

vector field. Let ρv be the density of charges at the point

P. It can be shown that the divergence of the ®D is given by

∇. ®D = ρv (4.17)

This is also the Maxwell’s first equation.

Figure 4.8: Gauss divergence theorem

Statement: The Gauss divergence theorem states that

the integral of the normal component of the flux density

over a closed surface of any shape in an electric field is

equal to the volume integral of the divergence of the flux

throughout the space enclosed by the Gaussian surface.

Mathematically
∮

s

®D. ®dS =

∮

v

(∇. ®D) dv (4.18)

Proof

Consider a volume v enclosed by a Gaussian surface S. Let

a charge dQ be enclosed by a small volume dv inside the

Gaussian surface. If ρ is the density of charges and may

vary inside the volume v then the charge density associated

with volume dv is given by

ρv =
dQ

dv

Thus

dQ = ρv dv

Thus the total charge enclosed by the Gaussian surface is

give by

Q =

∮

v

dQ =

∮

v

ρv dv

Substituting for ρv from Maxwell’s First equation 4.18 we

get

Q =

∮

v

(∇. ®D) dv

According to Gauss’ law of electrostatics we have

Q =

∮

s

®D. ®dS

Thus equating the equations for Q we get
∮

s

®D. ®dS =

∮

v

(∇. ®D) dv (4.19)

Thus Gauss divergence theorem. Divergence theorem re-

lates the surface integral with volume integral.

4.3.3 Stokes’ Theorem

Stokes, theorem relates surface integral with line integral

(Circulation of a vector field around a closed path).

Department of Physics 24 A T M E College of Engineering, Mysuru



Engineering Physics - Short Notes Engineering Physics

Figure 4.9: Stokes’ theorem

Statement: The surface integral of curl of ®F throughout

a chosen surface is equal to the circulation of the ®F around

the boundary of the chosen surface.

Mathematically
∫

s

(∇ × ®F). ®dS =

∮

®F . ®dl (4.20)

4.3.4 Gauss’ law of Magnetostatics

Consider a closed Gaussian surface of any shape in a

magnetic field. The magnetic fields lines exist in closed

loops. Hence for every flux line that enters the closed sur-

face a flux line emerges out else where. Thus for a closed

surface in a magnetic field the total inward flux(Positive)

is equal to total outward flux(Negative). Thus the net flux

through the Gaussian surface is zero. Thus it could be writ-

ten
∮

s

®B. ®dS = 0 (4.21)

Here ®B magnetic flux density. Applying Gauss divergence

theorem we get

Figure 4.10: Gauss’ Flux Theorem - Magnetostatics

∮

s

®B. ®dS =

∮

v

(∇. ®B) dv = 0

Hence it could be written

∇. ®B = 0 (4.22)

This is one of the Maxwell’s equations.

4.3.5 Amperes Law

Statement: The circulation of magnetic field strength
®H along a closed path is equal to the net current enclosed

(Ienc) by the loop. Mathematically

∮

®H. ®dl = Ienc (4.23)

By applying stokes’ theorem we get

∫

s

(∇ × ®H). ®dS = Ienc (4.24)

The equation for Ienc could be obtained as

Ienc =

∮

s

®J . ®dS (4.25)

Equating equations 4.24 and 4.25 we get

∫

s

(∇ × ®H). ®dS =

∮

s

®J . ®dS

Thus we get the amperes law as

∇ × ®H = ®J (4.26)

Thus Amperes circuital law and another Maxwell’s equa-

tion.

4.3.6 Biot-Savart Law

Considera a portion of a conductor carrying current I.

Let dl be infinitesimally small elemental length of the con-

ductor at M . Consider a point P near The conductor. Let
®MP be the the vector joining the element with the point

and of length r with r̂ being the unit vector. θ is the an-

gle made by MP with the element. Biot-Savart law states

the magnitude and direction of the small magnetic field at

P due to the elemental length dl of the current carrying

conductor.

Figure 4.11: Biot-Savart Law

The magnitude of the magnetic field ®dH is

1. Proporitonal to the length of the element dl
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2. Proportional to the current through the element I.

3. Proportional to the Sine of the angle θ, Sin(θ).

4. Inversely proportional to the square of the distance r .

The direction of the magnetic field ®dH is perpendicular

to the plane containing both the element and the vector ®r .

Mathematically we get

dH ∝ I dl Sin(θ)
r2

dH =
I dl Sin(θ)

4πr2
(4.27)

Here 1

4π
is the proportionality constant. the above equation

could be expressed in the vector form as

®dH =
I ®dl × r̂

4πr2
(4.28)

Thus the Biot-Savart Law.

4.3.7 Faraday’s Laws of electro-magnetic in-

duction

Statement

1. When ever there is a change in magnetic flux linked

with the circuit an emf (e) is induced and is equal to

rate of change of magnetic flux.

2. The em f induced is in such a direction that it apposes

the cause.

Mathematically the induced em f is given by

e = −dφ

dt
(4.29)

Here φ is magnetic flux linked with the circuit. For a coil

of N turns the induced em f due to rate of change of flux is

given by

e = −N
dφ

dt
(4.30)

Faraday’s law in integral and differential forms

For a conducting loop linked with change in magnetic flux

the rate of change flux is

dφ

dt
=

∫

s

∂ ®B
∂t
. ®dS (4.31)

The induced em f in the the circuit is given by

e =

∮

®E . ®dL (4.32)

Substituting the above in the equation 4.29 we get

∮

®E . ®dL = −
∫

s

∂ ®B
∂t
. ®dS (4.33)

Using the Stokes’ theorem
∮

®E . ®dL =

∫

s

(∇ × ®E). ®dS (4.34)

and hence we can write

∫

s

(∇ × ®E). ®dS = −
∫

s

∂ ®B
∂t
. ®dS (4.35)

Thus finally it reduces to

∇ × ®E = −∂
®B
∂t

(4.36)

Thus Faraday’s law in differential (Point form) and one of

the Maxwell’s equations.

4.4 Equation of continuity

In all processes involving motion of charge carriers the

net charge is always conserved and is called the law of

conservation of charges.

Let us consider a volume V . Let the charges flow in to

and out of the volume V . Then the equation for the law of

conservation could be written in the integral form as

∮

s

®J . ®dS = − ∂
∂t

∫

v

ρv dV (4.37)

ρv is the volume density of charge and ®J = Ne®v = ρv®v is

the current density.The negative sign indicates that the cur-

rent density is due to the decrease in positive charge den-

sity inside the volume. Using the Gauss divergence theo-

rem we can write
∮

s

®J . ®dS =

∮

v

(∇. ®J).dV

Thus the equation 4.37 could be written as
∮

v

(∇. ®J).dV = − ∂
∂t

∫

v

ρv dV

The above equation could be reduced to
∮

v

(∇. ®J).dV = −
∫

v

∂ρv

∂t
dV

Thus the equation of continuity could be written as

∇. ®J = −∂ρv
∂t

(4.38)

4.38 is also the law of conservation of charges.

Discussion on equation of continuity :

In case of DC circuits for steady currents the inward flow

of charges is equal to the outward flow through a closed

surface and hence
∂ρv
∂t
= 0. Thus the equation of continuity

becomes ∇. ®J = 0.

Department of Physics 26 A T M E College of Engineering, Mysuru



Engineering Physics - Short Notes Engineering Physics

Figure 4.12: DC and AC circuits - Continuity equation

In case of AC circuits containing capacitors the equa-

tion ∇. ®J = 0 fails as follows. During the positive half

cycle, say, the capacitor charges. If we imagine a closed

surface enclosing the capacitor plate and the attached con-

ductor there will be inward flow to the closed surface but

not outward flow. Thus in order to rescue the equation

of continuity Maxwell introduced the concept of displace-

ment current density.

4.5 Displacement Current

4.5.1 Definition

Displacement current density is a correction factor intro-

duced by Maxwell in order to explain the continuity of

electric current in time-varying circuits. It has the same

unit as electric current density. Displacement current is as-

sociated with magnetic current but it does not describe the

flow of charge.

4.5.2 Maxwell-Ampere Law

Introducing the concept of displacement current for time

varying circuits, Maxwell suggested corrections to the

Amperes law. According to Gauss’ Law

∇. ®D = ρv
Differentiating the above equation with respect to time

∂

∂t

(

∇. ®D
)

=

∂ρv

∂t

∇. ∂
®D
∂t
=

∂ρv

∂t
(4.39)

The equation of continuity is given by

∇. ®J = −∂ρv
∂t

Hence equation 4.39 could be written as

∇. ®J = −∇.
(

∂ ®D
∂t

)

∇.
(

®J + ∂
®D
∂t

)

= 0

Hence for time varying circuits ∇. ®J = 0 does not hold

good and instead ∇.
(

®J + ∂ ®D
∂t

)

= 0 has to be used. Also ®J
in Amperes Circuital law ∇× ®H = ®J has to be replace with
(

®J + ∂ ®D
∂t

)

Thus the Maxwell-Ampere law is given by

∇ × ®H = ®J + ∂
®D
∂t

(4.40)

In the above equation ∂ ®D
∂t

is called displacement current.

4.5.3 Expression for Displacement current

Consider an AC circuit containing a capacitor as shown in

the figure 4.13

Figure 4.13: Displacement current

The displacement current in terms of displacement cur-

rent density is given by

ID =

(

∂ ®D
∂t

)

.A (4.41)

Here A is the area of the capacitor plates.The elecric flux

density D is give by

D = ǫE (4.42)

Here E is the electric field strength which is given by

E =
V

d
(4.43)

Here d is the separation between the capacitor plates. V

the applied potential is given by

V = Vs e jwt (4.44)

Using equations 4.42, 4.43 and 4.44 we get

D =
ǫ

d
Vs e jωt (4.45)
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Substituting for D in equation 4.41 from equation 4.45,

we get

ID =
∂

∂t

( ǫ

d
Vs e jωt

)

.A

Executing differentiation the displacement current is given

by

ID =
jωǫA

d
Vs e jwt (4.46)

4.6 Maxwell’s Equations

Using the laws and theorems discussed in this chapter

Four Maxwell’s equations for time-varying fields could be

written as

1. Gauss’ Law of Electrostatics ∇. ®D = ρv

2. Faraday’s Law ∇ × ®E = − ∂ ®B
∂t

3. Gauss’ Law of Magnetic fields ∇. ®B = 0

4. Maxwell - Ampere Law ∇ × ®H = ®J + ∂ ®D
∂t

The Four Maxwell’s equations for static fields could be

written as

1. ∇. ®D = ρv
2. ∇ × ®E = 0

3. ∇. ®B = 0

4. ∇ × ®H = ®J

The above equations are used to study the electromag-

netic waves.
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Chapter 5

Electromagnetic waves

5.1 Introduction

The existence of EM waves was predicted by Maxwell the-

oretically using the point form of Faraday’s Law of electro-

magnetic induction. As per Faraday’s law a time varying

magnetic field induces electric field which varies with re-

spect to space and time. The reverse is also evident from

the equations. Thus Electromagnetic wave is the propaga-

tion of energy in terms of varying electric and magnetic

fields which are in mutually perpendicular directions and

perpendicular to the direction of propagation.

5.2 Wave equation for EM waves in

vacuum in terms of electric field

using Maxwell’s Equations

Consider the Maxwell’s equations

∇ × ®E = −∂
®B
∂t

(5.1)

∇ × ®H = ®J + ∂
®D
∂t

(5.2)

Substituting D = ǫE and B = µH in the above equations

we get

∇ × ®E = −µ∂
®H
∂t

(5.3)

∇ × ®H = ®J + ǫ ∂
®E
∂t

(5.4)

To derive wave equation in terms of electric field, the term
®H has to be eliminated. Taking curl on both sides the equa-

tion 5.3 we get

∇ × ∇ × ®E = −µ ∂
∂t

(

∇ × ®H
)

(5.5)

According to vector analysis A × (B × C) = B(A.C) −
C(A.B). Thus

∇ × ∇ × ®E = ∇
(

∇. ®E
)

− ∇2 ®E

As per the Maxwells equation ∇. ®D = ρv . Since D = ǫE

it could be written as ∇. ®E = ρv
ǫ

. Substituting in the above

equation we get

∇ × ∇ × ®E = ∇
( ρv

ǫ

)

− ∇2 ®E (5.6)

Substituting equation 5.6 in equation 5.5 we get

∇
( ρv

ǫ

)

− ∇2 ®E = −µ ∂
∂t

(

∇ × ®H
)

(5.7)

Substituting equation 5.4 in 5.7 we have

∇
( ρv

ǫ

)

− ∇2 ®E = −µ ∂
∂t

(

®J + ǫ ∂
®E
∂t

)

(5.8)

the above equation could be rewritten as

∇2 ®E − µǫ ∂
2 ®E
∂t2
= µ
∂ ®j
∂t
+ ∇

( ρv

ǫ

)

(5.9)

The LHS in equation 5.9 represents a propagating wave

and the RHS the source of origin of the wave. Here µ

and ǫ are respectively Absolute permeability and Absolute

permittivity of isotropic homogeneous medium. In case of

propagation of EM wave in free space ( ®J = 0, ρv = 0)
equation 5.9 reduces to

∇2 ®E − µǫ ∂
2 ®E
∂t2
= 0 (5.10)

Hence the electromagnetic wave equation in free space.

Comparing the above equation with the general wave equa-

tion we get the velocity of the EM wave

1

v2
= µǫ (5.11)

hence velocity of the EM wave

v =
1√
µǫ

(5.12)

The velocity of propagation of EM Wave in vacuum

c =
1√
µ0ǫ0

≈ 3 × 10
8ms−1 (5.13)
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5.3 Plane electromagnetic waves in

vacuum

Electromagnetic waves that travels in one direction and

uniform in the other two orthogonal directions is called

plane electromagnetic waves. For example consider a

plane electromagnetic wave traveling along z axis the elec-

tric and magnetic vibrations are uniform and confined to

x-y plane.

Figure 5.1: Plane Electromagnetic Waves

Consider a plane electromagnetic wave propagating

along +ve x-axis. If the time varying electric and mag-

netic fields are along y and z axes respectively then we can

write

®E = A Cos

[

2π

λ
(x − ct)

]

î (5.14)

®B = 1

c
A Cos

[

2π

λ
(x − ct)

]

ĵ (5.15)

The ratio of the amplitudes of Electric and Magnetic fields

from equations 5.14 and 5.15 is given by

Ey

Bz

= c (5.16)

Here ’c’ is the velocity of light.

5.4 Polarization of Elecromagnetic

waves

5.4.1 Transverse nature of electromagnetic

waves

The electric and magnetic variations are mutually perpen-

dicular and perpendicular to the direction of propagation.

Thus electromagnetic waves are transverse in nature. Elec-

tromagnetic waves also exhibit polarization. Consider an

electromagnetic wave propagating along z-axis. The the

electric field vector of this electromagnetic wave makes an

angle theta with respect to x-axis, say. This electric vec-

tor could be resolved into two perpendicular components
®Ex and ®Ey along x and y axes respectively. Based on the

magnitudes of the components and the phase difference be-

tween the components there are three kinds of polarization

of electromagnetic waves. They are

1. Linearly Polarized EM waves

2. Circularly Polarized EM waves

3. Electrically Polarized EM waves

Linear polarization In case of linear polarization the

amplitudes of ®Ex and ®Ey may or may not be equal and they

are in phase(in unison). Thus the projection of the resul-

tant ®E on a plane (x-y plane) perpendicular to the direction

of propagation is a straight line. Thus linear polarization.

Circular polarization In case of circular polarization

the amplitudes of ®Ex and ®Ey are equal in magnitude and the

phase difference is 90°. Thus the projection of the resultant

traces a circle on the plane perpendicular to the direction

of propagation. Thus Circular polarization.

Elliptical polarization In case of circular polarization

the amplitudes of ®Ex and ®Ey are unequal in magnitude and

the phase difference is 90°. Thus the projection of the re-

sultant traces an ellipse on the plane perpendicular to the

direction of propagation. Thus Circular polarization.

Figure 5.2: Polarization of Electromagnetic Waves

The linear, circular and elliptical polarization are as

shown in the figure 5.2.
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