
   

   

Module IV.    QUANTUM MECHANICS  

Blackbody Radiation: 

A Blackbody is one which absorbs all the light which is incident on it and re-radiates all those absorbed 

radiations when it is heated to incandescence (red hot). 

Blackbody Radiation spectrum:  
A Blackbody is one which absorbs the entire radiation incident 

on it and emits all the absorbed radiation when it is hotter. A 

true blackbody does not exist practically. Many Scientists tried 

to device an ideal blackbody, however, a blackbody designed 

by Wien has features very close to the true blackbody. A 

blackbody at a particular temperature found to emit a radiation 

of all possible wavelengths. The radiations emitted are 

analysed and is called blackbody radiation spectrum.  

 

 

Nature of Blackbody radiation Spectrum: The radiations emitted is analysed and the intensity (or the energy 

density) of emitted radiation is plotted against the wavelength as shown in fig. 

(i)At a constant temperature, radiations of different 

wavelengths are emitted out in different quantities. It is 

a continuous spectrum starting from certain minimum 

wavelength to maximum wavelength. There exist a 

particular wavelength (Called𝜆𝑚) for which intensity of 

emitted radiation is maximum. 

(ii)There are different curves for different 

temperatures. The intensity emitted radiation increases 

with the increase of the temperature. 

(iii) As the temperature of the body increases, the 

wavelength corresponding to maximum intensity (𝜆𝑚) 

shifts towards lower wavelength side.  

(iv) The area under the curve gives the total radiant 

energy. The area under the curve is proportional to the 

forth power of the absolute temperature. This is called Stefan’s 4th power law [E 𝛼 𝑇4]. 

Planck’s Law: 
In 1900, Max Plank explained the entire blackbody radiation spectrum by introducing the 

revolutionary idea of quantization of energy of the constituent atoms of the blackbody. 
Assumptions: 

i) A blackbody consists of large number of electrical oscillators whose energy is quantized. An 

oscillator may have any integral value for its energy given by E = nhν, where n is any positive integer, 

h is plank’s constant, υ is the frequency of oscillation.  



   

   

ii)  An oscillator may gain or lose energy by absorbing or emitting a radiation of frequency υ 

respectively where ν = 
𝛥𝐸

ℎ
, ΔE is difference in energies of the oscillator before and after the emission 

or absorption take place.  

With these assumptions Planck at an expression for distribution of energy of blackbody radiation as  

The energy radiated per unit volume from the surface of the blackbody in the wavelength interval λ 

and λ+ dλ is               𝑬𝝀dλ = 
𝟖𝝅𝒉𝒄

𝝀𝟓  
𝟏

𝐞 
(

𝐡𝐜
𝛌𝐊𝐓

)
− 𝟏

𝒅𝝀                         ------ (1) 

 

This is Plank’s Law of Blackbody Radiation. The values predicted by Plank’s law fitted with 

the experimental values and hence explains the nature of blackbody radiation completely. 

 

Note:  Plank’s law signifies the particle nature of blackbody radiation. With the help of this, Einstein 

explained Photoelectric effect. Later Compton used the same idea to explain Compton Effect of the X 

rays. These two phenomena lead to assume dual nature for Electro Magnetic Radiation. 
 

Matter waves 

De Broglie Hypothesis (Wave particle dualism) 

 Some of the Phenomena observed around 1900, like blackbody radiation, photoelectric effect 

etc, can be explained by assuming the particle nature. The phenomena like interference diffraction, 

polarization etc, can be explained only by assuming wave nature. Therefore it can be concluded that 

neither the wave theory nor the particle theory can be disputed and both are equally valid and light 

exhibit dual nature. 

 Nature manifest herself mainly in two forms, one is the energy and the other is matter. If light 

being a form of energy exhibit dual nature, then why cannot the matter? Based on these symmetry 

arguments, one can expect the matter also to exhibit dual nature. 

Based on these symmetry arguments, in1923, Luis de Broglie argued that “every moving particle is 

associated with wave nature, whose wavelength is given by  𝜆 =  
ℎ

𝑝
=  

ℎ

𝑚𝑣
, Where h is the Plank’s 

constant, m is the mass, v is the velocity and p is the momentum of the moving particle”. This statement (a 

logical argument without experimental proof) is called de Broglie hypothesis. 

Such waves associated with moving particle are called as matter waves or de Broglie waves, 

and the wavelength 𝝀 =  
𝒉

𝒑
=  

𝒉

𝒎𝒗
 is called de Broglie wavelength. 

   Properties of Matter waves 

1) Matter waves are the waves associated only with the moving particle. The particles at rest cannot 

exhibit the wave nature. 

2) Matter waves are called as pilot waves or guiding waves; they move with a velocity greater than 

the velocity of light leaving the particle behind. 

3) Matter waves are also called as the probability waves; the amplitude of matter waves reveals the 

probability of finding the particle at a point in a given region of space. 

4) Unlike EM waves, the matter waves of different wavelengths travel with different phase velocities. 

 

de Broglie wavelength in different forms: 

 The de Broglie wavelength of a particle of mass ‘m’ moving with a velocity ‘v’ and       momentum 

‘p’is given by  𝝀 =  
𝒉

𝒑
=  

𝒉

𝒎𝒗
 

Using the classical equation𝑝 = 𝑚𝑣, 



   

   

We get    𝑝2 =  𝑚2𝑣2 = 2𝑚 (
1

2
𝑚𝑣2) = 2𝑚 𝐸𝑘 

Or   𝑝 =  √2𝑚𝐸𝑘       

∴ The de Broglie wavelength of a particle moving with a kinetic energy Ek is 

 𝝀 =  
𝒉

√𝟐𝒎𝑬𝒌
     

  For an electron accelerated by a potential difference of V volts, the kinetic energy is Ek = qV.  

The de Broglie wavelength of an electron accelerated by a potential difference of V volts is given by

   𝝀 =  
𝒉

√𝟐𝒎𝒆𝑽
  . 

Note: 𝝀 =  
𝒉

√𝟐𝒎𝒆𝑽
   =

1

√𝑉
[

6.625 ×10−34

√2×9.1×10−31×1.6×10−19
]= 

1.226 𝑛𝑚

√𝑉
 

 

 The de Broglie wavelength of a particle which is in thermal equilibrium at a temperature T is 

    𝝀 =  
𝒉

√𝟑𝒎𝑲𝑻
   

Where K is the Boltzmann’s constant K = 1.38 × 10-23 m2 kg s-2 K-1. 

 

Note: 

The velocity of the de Broglie waves calculated by classical approach exceeds the velocity of 

light. At that time, it was believed that the velocity light is the maximum attainable velocity. This 

contradictory was resolved by Max born by suggesting a moving particle can associate with number 

of de Broglie waves whose wavelength is likely to be in the neighbourhood of that predicted by de 

Broglie. According to Max Born, all such coherent waves will interfere constructively over a limited 

region of space where the particle is located (to form a wave packet) and interfere destructively 

elsewhere. The individual de Broglie waves move with a velocity greater than the velocity of light 

leaving the particle behind. This velocity is called ‘Phase Velocity’. The wave packet enclosing the 

particle move with a different velocity called ‘Group Velocity’. 

According to Max Born, the particle can be located anywhere inside the wave packet. Hence 

there is an uncertainty regarding its position. Meanwhile if there exist no of de Broglie waves 

associated with the same particle, there is an uncertainty in its momentum (because =  
𝒉

𝒑
 ). This is 

known as uncertainty principle. 

 

Heisenberg’s Uncertainty Principle: 

Statement: “In any simultaneous measurement of position and momentum of a moving particle, the 

product of the corresponding uncertainties, which is inherently present in the measurement, is always 

greater than or equal to (
ℎ

4𝜋
)”.                 

      ie. ∆𝒙 . ∆𝒑 ≥  
𝒉

𝟒𝝅
  

Where  ∆𝑥  is the uncertainty regarding the position and ∆𝑝 is the uncertainty regarding the momentum. 

Explanation: If position is measured with great accuracy, then the simultaneous measurement of the 

momentum becomes less accurate, and vice versa. The product of the two corresponding uncertainties is 

always constant and  greater than the limit (
ℎ

4𝜋
). 



   

   

Note:  Such pair of variable which cannot be measured simultaneously with great accuracy are called 

canonically conjugate variables. The above uncertainty relation is given for 1-D motion. For the 3-D motion the 

uncertainty relation is    

 ∆𝒙 . ∆𝑷𝒙  ≥  
𝒉

𝟒𝝅
     

 ∆𝒚 . ∆𝑷𝒚  ≥  
𝒉

𝟒𝝅
   

 ∆𝒛 . ∆𝑷𝒛  ≥  
𝒉

𝟒𝝅
  . 

Such pair of variable which cannot be measured simultaneously with great accuracy are called 

canonically conjugate variables. The other examples of canonically conjugate variables are the angular  

momentum and angle as well as energy and time.  

Ie.          ∆𝑳 . ∆𝜽 ≥  
𝒉

𝟒𝝅
  

Where ∆𝐿 is the uncertainty in the measurement of angular momentum 

And  ∆𝜃 is the the uncertainty in the measurement of angular position 

and  ∆𝑬 . ∆𝒕 ≥  
𝒉

𝟒𝝅
   

Where ∆𝐸 is the uncertainty in the measurement of energy 

And  ∆𝑡 is the the uncertainty in the measurement of time 

 

Application of H U P: 

(To prove the nonexistence of electron inside the nucleus using HUP) 

Consider that the electron is present inside the nucleus.  

If  an electron is present inside the nucleus, then the error in the determination of its position

  ∆𝒙 ≤ 𝟏 × 𝟏𝟎−𝟏𝟒 𝒎. 

Then using HUP,  ∆𝒑 ≥  
𝒉

𝟒𝝅 .∆𝒙 
 = 

𝟔.𝟔𝟐𝟓×𝟏𝟎
−𝟑𝟒

𝟒𝝅 (𝟏×𝟏𝟎−𝟏𝟒) 
 = 5.27 × 10−21  kg –ms-1. 

∴   ∆𝒑 ≅ p = 5.27 x 10-21 NS 

The energy of the electron is given by classical equation E = 
𝑝2

2𝑚
  

  𝑬 ≥  
(𝟓.𝟐𝟕×𝟏𝟎−𝟐𝟏)

𝟐

(𝟐 ×𝟗.𝟏×𝟏𝟎−𝟑𝟏)
  = 1.5× 𝟏𝟎−𝟏𝟏 Joul. 

  Or                E  ≥ 95.37 x 10 6 eV ≅  95 MeV. 

I.e.   If the electron resides inside the nucleus, it should have a minimum energy of 95Mev. But 

it has been experimentally verified that no electron of an atom do not possess that much of 

huge energy. Even the bête particles (which are most energetic electrons) possess a maximum 

energy of nearly 4Mev. This contradictory result proves the nonexistence of electron inside the 

nucleus.  
 

 

 

Wave function 
Waves, in general, are associated with some quantity that varies periodically. For example, 

water waves involve the periodic variation of the height of water surface at a point. Similarly, sound 

waves are characterised by the periodic variation of pressure. The periodic variation of mutually 

perpendicular electric and magnetic vector characterises the electromagnetic waves. In the same way, 

‘the quantity that characterises the matter waves is called wave function’. It is always denoted by 

the Greek letter Ψ. The wave function contains all the information about the dynamical behaviour of 

the particle exhibiting the wave nature. 

A wave function is also a solution Schrodinger’s wave equation which describes the dynamical 

behaviour of a moving particle. As Schrodinger’s wave equation is a second order differential 

equation, the wave function is complex in nature. 



   

   

Properties of Wave function: 

There may be a number of solutions for the Schrodinger’s wave equation. Only the wave 

functions which satisfy the properties given bellow are called acceptable wave functions. 

 

1) The wave function Ψ should be single valued everywhere.  

Consider an example f(x) as shown in figure. At X = P, the function f(x) has 

three different values. If f(x) were to be the wave function, the probability of 

finding the particle at X = P has three different values which is absurd. Hence 

the function f(x) cannot be the wave function.  
 

2)  The wave function Ψ must be finite everywhere. 

                                              Consider a function f(x) as shown in fi7gure. At X = Q, the                         

                                             f(x) = ∞.  f(x) were to be the wave function, the probability 

                                             of finding the particle at X = Q cannot be ∞. Therefore f(x) 

                                             cannot be the wave function 

 

 

                               

3) The wave function Ψ and its first derivatives (both in space and time) must be 

continuous everywhere.  

Consider a function f(x) as shown in figure. The function f(x) is 

 not continuous at X = R, L.H.L. ≠ R.H.L.  The function f(x) may  

assume any value between f1(x) and f2(x) as it is not defined 

 properly. In other words f(x) has a discontinuity at X =R.  

As f(x) is not continuous, its first derivatives cannot be finite.  

Therefore f(x) cannot be a wave function.  

 

4) For the bound state, the wave function must vanish at infinity. If the wave function is 

complex, then the quantity Ψ*Ψ 𝑑𝑥 must vanish at infinity. 

 

 

Physical Significance of wave function 

- Born’s Interpretation (Probability density): 

 In Quantum Mechanics, it is postulated that the wave function contain all the information about 

the moving particle exhibiting wave nature. As the wave function is complex in nature, the quantity 

‘Ψ’ has no direct physical significance. However, when it is multiplied with its complex conjugate Ψ*, 

it would yield a real meaning. The quantity Ψ*Ψ = |𝛹|2  is called the probability density. The 

probability density is a measure of probability of finding the particle at point in a given region of space. 

The probability of finding the particle over an interval 𝑑𝑥 is given by Ψ*Ψ 𝒅𝒙 = |𝜳|𝟐 𝒅𝒙 

The probability of finding the particle over entire space (1D) is given by 

 ∫ 𝚿∗𝚿 𝒅𝒙
∞

−∞
 = ∫  |𝜳|𝟐 𝒅𝒙

∞

−∞
 

 

Normalization: 

 For a single particle system, the probability density should be always unity. Consider an 

example that we are trying to calculate the probability of finding an electron at a point on the Bohr’s 

orbit. If the electron is observed only six times out of ten trials, the probability of finding the electron 

is 0.6. It is not true if we say only 60% of the electron is observed all the time. Then one has to make 

the probability of finding the electron to be equal to unity by multiplying the wave function with an 

appropriate constant. 

𝑓(x) 

 

X X = P 

𝒇𝟐(𝒙)      

𝐟𝟑(𝐱) 

𝐟𝟏(𝐱)      

X X = R 

𝐟𝟐(𝐱)      

𝐟(𝐱) 

𝐟𝟏(𝐱)      

X X = Q 

𝐟(𝐱) 

 



   

   

“The process of making the probability density to be equal to unity is called normalization and 

the constant of multiplication is called normalization constant”. The above explanation can be 

expressed in terms of equations as  

Let ∫ 𝚿∗𝚿 𝒅𝒙
∞

−∞
= 𝑁 

Then 
1

𝑁
 ∫ 𝚿∗𝚿 𝒅𝒙

∞

−∞
= 1 

Or ∫
𝟏

√𝐍
𝚿∗.

𝟏

√𝐍
𝚿 𝒅𝒙

∞

−∞
= 1   -------- (i) 

Where (
𝟏

√𝐍
)the normalization constant and the wave function is 

𝟏

√𝐍
𝚿  is called normalized wave 

function. If we denote 
𝟏

√𝐍
𝚿  by new wave function ψ equation (i) becomes  

                 ∫ 𝛙∗𝛙 𝒅𝒙
∞

−∞
= 1          -------------- (ii) 

This is the condition for normalization. Any wave function satisfying above equation is said to be 

normalized. 

 

 

Setting up of 1-D time independent Schrodinger’s Wave Equation 
 

Consider a particle of mass m, moving with a velocity v and a momentum p along +ve  X-axis. The 

de Broglie waves associated with the moving particle have a wavelength in the neighbourhood of  

𝜆 =  
ℎ

𝑝
   ---------------- (1) 

The wave function representing those de Broglie waves is of the form 

Ψ = 𝐴 𝑒𝑖(𝜔𝑡−𝑘𝑥 )  --------- (2) 

Where 𝜔 is the angular frequency and K is the Wave number. 

Differentiating the above equation twice partially w.r.t. x, we get 

𝑑𝛹

𝑑𝑥
= −𝑖𝑘. 𝐴  𝑒𝑖(𝜔𝑡−𝑘𝑥 ) 

𝑑2𝛹

𝑑𝑥2
= −𝐾2𝐴  𝑒𝑖(𝜔𝑡−𝑘𝑥 ) 

𝑑2𝛹

𝑑𝑥2
= −𝐾2Ψ          

∴              
𝑑2𝛹

𝑑𝑥2 +  𝐾2Ψ = 0    ------------ (3) 

 

We know that the wave number 𝑘 =  
2𝜋

𝜆
      ⇒ 𝐾2 =  

𝟒𝝅𝟐

𝝀𝟐  

∴     
𝑑2𝛹

𝑑𝑥2
+ 

𝟒𝝅𝟐

𝝀𝟐 Ψ = 0 

From equation (1), we have 𝝀𝟐 =
𝒉𝟐

𝒑𝟐     ⇒      
𝟏

𝝀𝟐 =  
𝒑𝟐

𝒉𝟐  

∴       
𝑑2𝛹

𝑑𝑥2
+ 

𝟒𝝅𝟐𝒑𝟐

𝒉𝟐 Ψ = 0         -------------- (4) 

 

We have, kinetic energy 𝐸𝑘 =  
1

2
𝑚𝑣2  =  

𝑝2

2𝑚
         ⇒   𝑝2 = 2𝑚𝐸𝑘     

∴              
𝑑2𝛹

𝑑𝑥2
+ 

𝟖𝝅𝟐𝑚 𝐸𝑘

𝒉𝟐 Ψ = 0         -------------- (5) 



   

   

The total energy E =  EK  + V    ⇒      E - V =  EK      

∴              
𝒅𝟐𝜳

𝒅𝒙𝟐
+ 

𝟖𝝅𝟐𝒎 

𝒉𝟐  (𝐄 − 𝐕) 𝚿 = 𝟎         -------------- (6) 

This is the time independent Schrodinger’s wave equation in 1-D. 

 

Note:  

(i) For a free particle V = 0. 

∴ 1-D time independent Schrodinger’s wave equation for a free particle is  

          
𝑑2𝛹

𝑑𝑥2
+ 

𝟖𝝅𝟐𝑚E 

𝒉𝟐  Ψ = 0          

      (ii) The time independent Schrodinger’s wae equation for three dimensions is 

𝛁𝟐Ψ +  
𝟖𝝅𝟐𝑚

𝒉𝟐
(E − V) Ψ = 0     

 

Eigen Value equation  - Eigen values and Eigen functions: 

On rearranging S. W. E.  

   [−
ℎ2

8𝜋2𝑚
+ 𝑉] Ψ = E Ψ 

Ie.           Ĥ Ψ = E Ψ        Where     [−
ℎ2

8𝜋2𝑚
+ 𝑉]=  Ĥ  where Ĥ is called Hamiltonian Operator. 

Above equation is called Eigen value equation. Any wave function satisfying this equation is called 

eigen function. 

 An operator operating on a wave function gives constant 

times the same wave function. The constant thus obtained is called Eigen value of the operator. 

Eigen value of an operator refers to the expectation value (most probable value) of the dynamical 

variable represented by that particular operator. 

The commonly used operators and the corresponding dynamical variables are listed below. 

 

Operators in Quantum Mechanics: 

 

      Operator is a mathematical rule which yield the expectation value of a dynamical variable. 

 

Eg.     Consider the function y = sin 2x, if (
𝑑

𝑑𝑥
) is the operator then 

          
𝑑

𝑑𝑥
(𝑆𝑖𝑛 2𝑥)= 2. Cos 2x which implies Sin 2x is not the Eigen function of the operator(

𝑑

𝑑𝑥
). 

         Now consider the operator ( 
𝑑2

𝑑𝑥2
), then 

          
𝑑2

𝑑𝑥2 (Sin 2x) =  -4 sin 2x  which implies Sin 2x is the Eigen function of the operator ( 
𝑑2

𝑑𝑥2) and    

           -4 is the eigen value of ( 
𝑑2

𝑑𝑥2). 

 

 

 

 

 

 



   

   

PARTICLE IN A POTENTIAL WELL OF INFINITE HEIGHT AND FINITE WIDTH:  

   

The Wave Function and Energy Eigen Values: 

 

Consider a moving free particle trapped between 

imaginary walls of infinite height at x=0 and x = a. The 

potential acting on the particle inside the well is zero. The 

potential outside the well is ∞. The dynamical behaviour of 

the particle is studied by solving the time independent 

Schrodinger’s wave equation.  

 

For the region I and III, S.W.E can be written as 

      
𝑑2𝛹

𝑑𝑥2
+ 

𝟖𝝅𝟐𝑚 

𝒉𝟐  (E − ∞) Ψ = 0       ------- (1)   

The only possible solution for the above equation is Ψ = 0, 

i.e. the particle cannot enter in to the region I and III. 
 

For the region II, S.W.E can be written as 

      
𝑑2𝛹

𝑑𝑥2
+ 

𝟖𝝅𝟐𝑚𝐸 

𝒉𝟐   Ψ = 0         ------- (2)   

Put        
𝟖𝝅𝟐𝑚𝐸 

𝒉𝟐  =  𝐾2                ------- (2a)   

Then       
𝑑2𝛹

𝑑𝑥2
+ 𝐾2 Ψ = 0          

The solution to the above equation is of the form   𝜳 = 𝑪  𝐜𝐨𝐬 𝑲𝒙     + 𝑫 𝐬𝐢𝐧 𝑲𝒙     ------- (3)   

 

The behaviour of the particle at the walls forms the boundary conditions. As it is continuously in 

motion in region II, the particle cannot stick on to the walls. 

∴ The boundary conditions are  (i) Ψ=0 at x =0 and 

 (ii) Ψ=0 at  x = a. 

 

From the1st boundary condition  Ψx=0 =   𝐶  𝑐𝑜𝑠𝐾𝑥𝑥=0 +    𝐷 sin Kxx=0 

                                                            0 = C + 0 

           ⇒ C = 0 

The wave function becomes  𝛹 = 𝐷  sin 𝐾𝑥      ------- (4)   

 

From the 2nd boundary condition  Ψx=a = 𝐷 Sin Ka   

            0 = D sin 𝐾𝑎  

Since D≠0, sin 𝐾𝑎=0 

⇒  𝐾𝑎 = sin−1(0) 

 ∴ 𝐾𝑎 = 𝑛𝜋, where n = 0,1,2,3,..... 

And  𝑲 =
𝒏𝝅

𝒂
        ------- (4a)   

Therefore the wave function becomes  𝜳𝒏 = 𝑫 𝐬𝐢𝐧 (
𝒏𝝅𝒙

𝒂
)  where n = 1,2,3,.....             ------- (5)   

As right hand side involves an integral integer, the suffix n is assigned to the wave function also.n=0 

is excluded because 𝛹𝑛 = 0 means the particle is nowhere present in region II(which is a contradict). 

 

−∞ 

Region - III Region - I 

V = ∞ 

X=L X=0 

∞ ∞ 

V = 0 V = ∞ 

Region - II 

∞ 



   

   

From (2a), we have 
𝟖𝝅𝟐𝑚𝐸 

𝒉𝟐
 =  𝐾2 

Fro (4a), we have           𝐾 =
𝑛𝜋

𝑎
 

∴ We can write        
𝟖𝝅𝟐𝑚𝐸 

𝒉𝟐
 =  (

𝑛𝜋

𝑎
)

2

 

On re arranging, we get   𝐄 = 𝐧𝟐𝐡
𝟐

𝟖𝐦𝐚𝟐      

Or  𝐄𝐧 =
𝐧𝟐𝐡𝟐

𝟖𝐦𝐚𝟐
    where n = 1,2,3,.....     ------- (6)   

 

Again, as right hand side involves an integral integer, the suffix n is 

assigned to the energy also. n=0 is excluded because 𝐸𝑛 = 0 means the 

particle not at all moving in region II (which is contradict). 

 

The least possible energy of the particle inside the potential well is called Zero point energy 

or ground state energy. All other possible energies (E2, E3, and so on, called excited states) are the 

integral multiple of this ground state energy. Therefore the energy of the particle confined in a potential 

well is said to be quantized. All the characteristic energy levels are represented by appropriate wave 

functions, called eigen functions. The figure shows the energy eigen values and corresponding eigen 

functions of the particle confined in an infinite potential well and finite width. 

 

Normalization of the wave function: 

We know that the condition for normalization is ∫ 𝛙∗𝛙 𝒅𝒙
∞

−∞
= 1      ------- (7)   

But , we know that the wave function 𝛹𝑛 is zero in region I and region III and is real only in region II. 

Therefore, the condition for normalization reduces to ∫ 𝚿𝐧
∗𝚿𝐧 𝒅𝒙

𝑎

0
= 1   ------- (8)      

      Where 𝛹𝑛 = 𝐷 sin (
𝑛𝜋𝑥

𝑎
) ; Ψn

∗= 𝐷∗  sin (
𝑛𝜋𝑥

𝑎
) 

∴ ∫ 𝚿𝐧
∗𝚿𝐧 𝒅𝒙

𝑎

0
 =  ∫ 𝐷∗  sin (

𝑛𝜋𝑥

𝑎
) . 𝐷 sin (

𝑛𝜋𝑥

𝑎
)  𝒅𝒙

𝑎

0
 = 1 

                                           𝐷∗. 𝐷 ∫ 𝑠𝑖𝑛2 (
𝑛𝜋𝑥

𝑎
)  𝒅𝒙

𝑎

0
= 1 

         |𝐷|2.
1

2
 ∫ [1 − 𝑐𝑜𝑠 (

2𝑛𝜋𝑥

𝑎
)]  𝒅𝒙

𝑎

0
= 1 

                                |𝐷|2.
1

2
 {[𝑎 − 0] − [𝑜 − 𝑜]} = 1 

                                                                       ∴   |𝐷|2.
𝑎

2
= 1         

                                                                              Or   |𝐷|2. =
2

𝑎
         

                                                                Or    D = √
𝟐

𝒂
  

Therefore the normalized wave function for the particle confined in an infinite potential well 

and finite width is        𝜳𝒏 = √
𝟐

𝒂
   𝐬𝐢𝐧 (

𝒏𝝅𝒙

𝒂
)   ------- (9)      

 

 

𝜳𝟏 

𝜳𝟑 

𝜳𝟐 

𝑬𝟎 =𝑬𝟏 

𝑬𝟑 

𝑬𝟐 

X=a X=0 

∞ ∞ 



   

   

+Eigen functions, probability densities and energy levels for particle in an infinite potential 

well: 

 

The wave function and the particle confined in an infinite potential well and finite width is            

   𝜳𝒏 = √
𝟐

𝒂
   𝐬𝐢𝐧 (

𝒏𝝅𝒙

𝒂
)   ------- (a)      

and          𝑬𝒏 = 𝒏𝟐𝒉
𝟐

𝟖𝒎𝒂𝟐 = 𝒏𝟐𝑬𝟎     where n = 1,2,3,.....     ------- (b)   

Case I →n=1:  The energy corresponding to n=1 is the lowest possible energy, called zero point energy 

(Ground state energy), denoted by E0. This energy level is represented by the wave function 

 𝜳𝟏 = √
𝟐

𝒂
   𝐬𝐢𝐧 (

𝝅𝒙

𝒂
)   

𝜳𝟏 = 0 for x = 0 and x = a and  𝜳𝟏 is maximum when x = a/2.  

The wave function 𝜳𝟏 and the probability density |𝜳𝟏|2 can be represented as shown in figure. 

 

Case II → n=2:  The energy corresponding to n = 2 is E2 = 4E0 called the 1st excited state. This energy 

level is represented by the wave function  𝜳𝟐 = √
𝟐

𝒂
   𝐬𝐢𝐧 (

𝟐𝝅𝒙

𝒂
)   

𝜳𝟐= 0 for x = 0, a/2 and a. 

𝜳𝟐=√
𝟐

𝒂
   for x = a/4 and 𝜳𝟐=− √

𝟐

𝒂
   for x = 3a/4. 

The wave function 𝜳𝟐 and the probability density |𝜳𝟐|2 can be represented as shown in figure. 

 

Case III → n=3:   The energy corresponding to n = 3 is E3 = 9E0 called the 2nd excited state. This 

energy level is represented by the wave function  𝜳𝟑 = √
𝟐

𝒂
   𝐬𝐢𝐧 (

𝟑𝝅𝒙

𝒂
)   

𝜳𝟑= 0 for x = 0, a/3 and 2a/3. 

𝜳𝟑=√
𝟐

𝒂
   for x = a/6 &5a/6 and 𝜳𝟑=− √

𝟐

𝒂
   for x = a/2.  

The wave function 𝜳𝟑 and the probability density |𝜳𝟑|2 can be represented as shown in figure given 

bellow.  

 


